Advertisement

Applied Physics A

, 125:829 | Cite as

Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector

  • S. M. A. Rastialhosseini
  • A. KhayatianEmail author
  • R. Shariatzadeh
  • M. Almasi Kashi
Article
  • 56 Downloads

Abstract

Three-dimensional ZnO nanorods (NRs) were synthesized by hydrothermal method on ZnO seed layer including horizontal ZnO NRs. The ZnO seed layers consist of different values of NRs were synthesized by spin-coating. The different seed layers and ZnO nanorods arrays were characterized using field emission scanning electron microscopy, X-ray diffraction. Horizontally dispersed NRs on the substrate formed an overlapping junction structure into seed layer as ZnO NRs network. NRs grown on the seed layer including horizontal NRs were oriented in different directions to form three-dimensional ZnO NRs in flower shape. The electrical resistance of sensors based NRs array decreased dramatically with increasing NRs added to ZnO seed layer. Results show that ultraviolet photocurrent increased from 1.7 to 23 μA which is suitable for fabrication of practical photodevices.

Notes

Acknowledgements

Authors would like to thank the University of Kashan for supporting this work by Grant No. (159023/55).

References

  1. 1.
    R. Azimirad, A. Khayatian, S. Safa, M.A. Kashi, Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods. J. Alloys Compd. 615, 227–233 (2014)Google Scholar
  2. 2.
    E. Rokhsat, O. Akhavan, Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci. 371, 590–595 (2016)ADSGoogle Scholar
  3. 3.
    Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013)Google Scholar
  4. 4.
    M.N. Rezaie, N. Manavizadeh, F.D. Nayeri, M.M. Bidgoli, E. Nadimi, F.A. Boroumand, Effect of seed layers on low-temperature, chemical bath deposited ZnO nanorods-based near UV-OLED performance. Ceram. Int. 44(5), 4937–4945 (2018)Google Scholar
  5. 5.
    Y. Bu, Z. Chen, W. Li, J. Yu, High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array. ACS Appl. Mater. Interfaces 5(11), 5097–5104 (2013)Google Scholar
  6. 6.
    M. Sun, Z. Chen, X. Jiang, C. Feng, R. Zeng, Optimized preparation of Co-Pi decorated g-C3N4@ ZnO shell-core nanorod array for its improved photoelectrochemical performance and stability. J. Alloys Compd. 780, 540–551 (2019)Google Scholar
  7. 7.
    M.M. Sivalingam, K. Balasubramanian, Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis. Appl. Phys. A 122(7), 694 (2016)ADSGoogle Scholar
  8. 8.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Physica E 91, 72–81 (2017)ADSGoogle Scholar
  9. 9.
    M. Sun, Z. Chen, Y. Bu, J. Yu, B. Hou, Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination. Corros. Sci. 82, 77–84 (2014)Google Scholar
  10. 10.
    M. Novotný, E. Marešová, P. Fitl, J. Vlček, M. Bergmann, M. Vondráček, R. Yatskiv, J. Bulíř, P. Hubík, P. Hruška, The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation. Appl. Phys. A 122(3), 225 (2016)ADSGoogle Scholar
  11. 11.
    K. Niranjan, S. Dutta, S. Varghese, A.K. Ray, H.C. Barshilia, Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Appl. Phys. A 123(4), 250 (2017)ADSGoogle Scholar
  12. 12.
    S.N.Q.A.A. Aziz, S.-Y. Pung, Z. Lockman, Growth of Fe-doped ZnO nanorods using aerosol-assisted chemical vapour deposition via in situ doping. Appl. Phys. A 116(4), 1801–1811 (2014)ADSGoogle Scholar
  13. 13.
    R. Shakernejad, A. Khayatian, A. Ramazani, S. Akhtarianfar, M.A. Kashi, Analysis of structural and UV photodetecting properties of ZnO nanorod arrays grown on rotating substrate. J. Sol-Gel Sci. Technol. 85(2), 458–469 (2018)Google Scholar
  14. 14.
    W.I. Park, C.H. Lee, J.H. Chae, D.H. Lee, G.C. Yi, Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal–organic chemical vapor deposition. Small 5(2), 181–184 (2009)Google Scholar
  15. 15.
    M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, M. Davoudian, UV detecting properties of hydrothermal synthesized ZnO nanorods. Physica E 43(6), 1141–1145 (2011)ADSGoogle Scholar
  16. 16.
    A. Zainelabdin, S. Zaman, G. Amin, O. Nur, M. Willander, Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature. Appl. Phys. A 108(4), 921–928 (2012)ADSGoogle Scholar
  17. 17.
    C. Shin, J. Heo, J. Park, T. Lee, H. Ryu, B. Shin, W. Lee, H.-K. Kim, The effect of pH on ZnO hydrothermal growth on PES flexible substrates. Physica E 43(1), 54–57 (2010)ADSGoogle Scholar
  18. 18.
    J.-H. Wu, S.-Y. Liu, S. Li, Y-l Jiang, G.-P. Ru, X.-P. Qu, The influence of ZnO seed layers on n-ZnO nanostructure/p-GaN LEDs. Appl. Phys. A 109(2), 489–495 (2012)ADSGoogle Scholar
  19. 19.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, N.G. Elafadill, H.R. Abd, Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse. Opt. Laser Technol. 98, 344–353 (2018)ADSGoogle Scholar
  20. 20.
    A. Khayatian, V. Asgari, A. Ramazani, S. Akhtarianfar, M.A. Kashi, S. Safa, Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance. Mater. Res. Bull. 94, 77–84 (2017)Google Scholar
  21. 21.
    S.-H. Lee, S.-H. Han, H.S. Jung, H. Shin, J. Lee, J.-H. Noh, S. Lee, I.-S. Cho, J.-K. Lee, J. Kim, Al-doped ZnO thin film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 114(15), 7185–7189 (2010)Google Scholar
  22. 22.
    Y. Park, G. Nam, B. Kim, J.-Y. Leem, Effect of metallic Au seed layer annealing on the properties of electrodeposited ZnO nanorods. J. Nanosci. Nanotechnol. 15(11), 8553–8556 (2015)Google Scholar
  23. 23.
    L. Li, H. Jiang, X. Han, Z. Zhan, H. Du, W. Lu, Z. Li, Z. Tao, Y. Fan, Optimizing growth of ZnO nanowire networks for high-performance UV detection. Ceram. Int. 43(17), 15978–15985 (2017)Google Scholar
  24. 24.
    M. Amin, N.A. Shah, A.S. Bhatti, Development of highly sensitive UV sensor using morphology tuned ZnO nanostructures. Appl. Phys. A 118(2), 595–603 (2015)ADSGoogle Scholar
  25. 25.
    A. Khayatian, M.A. Kashi, R. Azimirad, S. Safa, Enhanced gas-sensing properties of ZnO nanorods encapsulated in an Fe-doped ZnO shell. J. Phys. D Appl. Phys. 47(7), 075003 (2014)ADSGoogle Scholar
  26. 26.
    R. Ahmad, N. Tripathy, M.-S. Ahn, J.-Y. Yoo, Y.-B. Hahn, Preparation of a highly conductive seed layer for calcium sensor fabrication with enhanced sensing performance. ACS Sens. 3(4), 772–778 (2018)Google Scholar
  27. 27.
    A. Resmini, I. Tredici, C. Cantalini, L. Giancaterini, F. De Angelis, E. Rondanina, M. Patrini, D. Bajoni, U. Anselmi-Tamburini, A simple all-solution approach to the synthesis of large ZnO nanorod networks. J. Mater. Chem. A 3(8), 4568–4577 (2015)Google Scholar
  28. 28.
    P. Giri, S. Dhara, R. Chakraborty, Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays. Mater. Chem. Phys. 122(1), 18–22 (2010)Google Scholar
  29. 29.
    S.-W. Chen, J.-M. Wu, Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater. 59(2), 841–847 (2011)Google Scholar
  30. 30.
    S.-H. Yi, S.-K. Choi, J.-M. Jang, J.-A. Kim, W.-G. Jung, Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 313(2), 705–710 (2007)ADSGoogle Scholar
  31. 31.
    B.S. Sannakashappanavar, C. Byrareddy, P.S. Kumar, A.B. Yadav, Seed layer effect on different properties and UV detection capability of hydrothermally grown ZnO nanorods over SiO2/p-Si substrate. Superlattices Microstruct. 117, 503–514 (2018)ADSGoogle Scholar
  32. 32.
    M. Salina, N. Samah, M.M. Adnan, M. Rusop, Novel growth of aligned zinc oxide nanorod arrays on Mg 0.3 Zn 0.7 O seed layer and its rectifying behaviour. J. Fundam. Appl. Sci. 10(6), 879–895 (2018)Google Scholar
  33. 33.
    L.-X. Du, Y. Jiao, S.-Y. Niu, H. Miao, H.-B. Yao, K.-G. Wang, X.-Y. Hu, H.-B. Fan, Control of morphologies and properties of zinc oxide nanorod arrays by slightly adjusting their seed layers. Nanomater. Nanotechnol. 6, 1847980416663674 (2016)Google Scholar
  34. 34.
    C.-Y. Kuo, R.-M. Ko, Y.-C. Tu, Y.-R. Lin, T.-H. Lin, S.-J. Wang, Tip shaping for ZnO nanorods via hydrothermal growth of ZnO nanostructures in a stirred aqueous solution. Cryst. Growth Des. 12(8), 3849–3855 (2012)Google Scholar
  35. 35.
    W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80(22), 4232–4234 (2002)ADSGoogle Scholar
  36. 36.
    M. Ghosh, R. Bhattacharyya, A. Raychaudhuri, Growth of compact arrays of optical quality single crystalline ZnO nanorods by low temperature method. Bull. Mater. Sci. 31(3), 283–289 (2008)Google Scholar
  37. 37.
    B.-S. Wang, R.-Y. Li, Z.-Y. Zhang, X.-L. Wu, G.-A. Cheng, R.-T. Zheng, An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting. Catal. Today 321, 100–106 (2018)Google Scholar
  38. 38.
    S.F. Akhtarianfar, A. Khayatian, R. Shakernejad, M. Almasi-Kashi, S.W. Hong, Improved sensitivity of UV sensors in hierarchically structured arrays of network-loaded ZnO nanorods via optimization techniques. RSC Adv. 7(51), 32316–32326 (2017)Google Scholar
  39. 39.
    H. Wang, Z. Zhang, X. Wang, Q. Mo, Y. Wang, J. Zhu, H. Wang, F. Yang, Y. Jiang, Selective growth of vertical-aligned ZnO nanorod arrays on Si substrate by catalyst-free thermal evaporation. Nanoscale Res. Lett. 3(9), 309 (2008)ADSGoogle Scholar
  40. 40.
    M. Abdelfatah, A. El-Shaer, One step to fabricate vertical submicron ZnO rod arrays by hydrothermal method without seed layer for optoelectronic devices. Mater. Lett. 210, 366–369 (2018)Google Scholar
  41. 41.
    H. Choi, Y.-M. Lee, J.-H. Yu, K.-H. Hwang, J.-H. Boo, Patterned well-aligned zno nanorods assisted with polystyrene monolayer by oxygen plasma treatment. Materials 9(8), 656 (2016)ADSGoogle Scholar
  42. 42.
    P.U. Londhe, N.B. Chaure, Effect of pH on the properties of electrochemically prepared ZnO thin films. Mater. Sci. Semicond. Process. 60, 5–15 (2017)Google Scholar
  43. 43.
    H.-W. Chen, H.-W. Yang, H.-M. He, Y.-M. Lee, ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics. J. Phys. D Appl. Phys. 49(2), 025306 (2015)ADSGoogle Scholar
  44. 44.
    T. Ates, C. Tatar, F. Yakuphanoglu, Preparation of semiconductor ZnO powders by sol–gel method: humidity sensors. Sens. Actuators A 190, 153–160 (2013)Google Scholar
  45. 45.
    R. Shabannia, H.A. Hassan, Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis. Appl. Phys. A 114(2), 579–584 (2014)ADSGoogle Scholar
  46. 46.
    M.C.M. Angub, C.J.T. Vergara, H.A.F. Husay, A.A. Salvador, M.J.F. Empizo, K. Kawano, Y. Minami, T. Shimizu, N. Sarukura, A.S. Somintac, Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for future radiation detectors. J. Lumin. 203, 427–435 (2018)Google Scholar
  47. 47.
    L. Vikas, K. Vanaja, P. Subha, M. Jayaraj, Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction. Sens. Actuators A 242, 116–122 (2016)Google Scholar
  48. 48.
    L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A 267, 242–261 (2017)Google Scholar
  49. 49.
    O. Lupan, L. Chow, T. Pauporté, L. Ono, B.R. Cuenya, G. Chai, Highly sensitive and selective hydrogen single-nanowire nanosensor. Sens. Actuators B Chem. 173, 772–780 (2012)Google Scholar
  50. 50.
    O. Lupan, V. Ursaki, G. Chai, L. Chow, G. Emelchenko, I. Tiginyanu, A. Gruzintsev, A. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B Chem. 144(1), 56–66 (2010)Google Scholar
  51. 51.
    Dhara S, Giri P ZnO nanorods arrays and heterostructures for the high sensitive UV photodetection, in Nanorods (InTech, 2012)Google Scholar
  52. 52.
    A.G. Ardakani, M. Pazoki, S.M. Mahdavi, A.R. Bahrampour, N. Taghavinia, Ultraviolet photodetectors based on ZnO sheets: the effect of sheet size on photoresponse properties. Appl. Surf. Sci. 258(14), 5405–5411 (2012)ADSGoogle Scholar
  53. 53.
    C. Florica, N. Preda, M. Enculescu, I. Zgura, M. Socol, I. Enculescu, Superhydrophobic ZnO networks with high water adhesion. Nanoscale Res. Lett. 9(1), 385 (2014)ADSGoogle Scholar
  54. 54.
    D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.-P. Simonato, Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45), 452001 (2013)ADSGoogle Scholar
  55. 55.
    M.R. Alenezi, S.J. Henley, S. Silva, On-chip fabrication of high performance nanostructured ZnO UV detectors. Sci. Rep. 5, 8516 (2015)ADSGoogle Scholar
  56. 56.
    C. Yan, N. Singh, H. Cai, C.L. Gan, P.S. Lee, Network-enhanced photoresponse time of Ge nanowire photodetectors. ACS Appl. Mater. Interfaces 2(7), 1794–1797 (2010)Google Scholar
  57. 57.
    C.-Y. Lu, S.-P. Chang, S.-J. Chang, T.-J. Hsueh, C.-L. Hsu, Y.-Z. Chiou, I.-C. Chen, A lateral ZnO nanowire UV photodetector prepared on a ZnO: Ga/glass template. Semicond. Sci. Technol. 24(7), 075005 (2009)ADSGoogle Scholar
  58. 58.
    L. Zhu, X. Gu, F. Qu, J. Zhang, C. Feng, J. Zhou, S. Ruan, B. Kang, Electrospun ZnO nanofibers-based ultraviolet detector with high responsivity. J. Am. Ceram. Soc. 96(10), 3183–3187 (2013)Google Scholar
  59. 59.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D. Aplin, J. Park, X. Bao, Y.-H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)ADSGoogle Scholar
  60. 60.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv. Mater. 26(10), 1541–1550 (2014)Google Scholar
  61. 61.
    D. Kim, W. Kim, S. Jeon, K. Yong, Highly efficient UV-sensing properties of Sb-doped ZnO nanorod arrays synthesized by a facile, single-step hydrothermal reaction. RSC Adv. 7(64), 40539–40548 (2017)Google Scholar
  62. 62.
    A.D. Mahapatra, D. Basak, Enhanced ultraviolet photosensing properties in Bi2S3 nanoparticles decorated ZnO nanorods’ heterostructure. J. Alloys Compd. 797, 766–774 (2019)Google Scholar
  63. 63.
    A. Ismail, M. Mamat, I.S. Banu, R. Amiruddin, M. Malek, N. Parimon, A. Zoolfakar, N.M. Sin, A. Suriani, M. Ahmad, Structural modification of ZnO nanorod array through Fe-doping: ramification on UV and humidity sensing properties. Nano-Struct. Nano-Objects 18, 100262 (2019)Google Scholar
  64. 64.
    J. Liu, N. Yu, Y. Qi, H. Zhao, Q. Yuan, L. Cao, Facile fabrication of p-Cu2O/n-ZnO nanorods arrays heterojunction ultraviolet sensor by aqueous method. Mater. Res. Express 6(1), 015012 (2018)ADSGoogle Scholar
  65. 65.
    A. Pimentel, A. Samouco, D. Nunes, A. Araújo, R. Martins, E. Fortunato, Ultra-fast microwave synthesis of ZnO nanorods on cellulose substrates for UV sensor applications. Materials 10(11), 1308 (2017)ADSGoogle Scholar
  66. 66.
    Y. Xie, H. Li, D. Zhang, L. Zhang, High-performance quasi-solid-state photoelectrochemical-type ultraviolet photodetector based on ZnO nanowire arrays. Vacuum 164, 58–61 (2019)ADSGoogle Scholar
  67. 67.
    L. Yang, H. Zhou, M. Xue, Z. Song, H. Wang, A self-powered, visible-blind ultraviolet photodetector based on n-Ga: ZnO nanorods/p-GaN heterojunction. Sens. Actuators A 267, 76–81 (2017)Google Scholar
  68. 68.
    H. Zheng, Y. Jiang, S. Yang, Y. Zhang, X. Yan, J. Hu, Y. Shi, B. Zou, ZnO nanorods array as light absorption antenna for high-gain UV photodetectors. J. Alloys Compd. 812, 152158 (2019)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. M. A. Rastialhosseini
    • 1
  • A. Khayatian
    • 2
    Email author
  • R. Shariatzadeh
    • 3
  • M. Almasi Kashi
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of KashanKashanIran
  2. 2.Department of PhysicsUniversity of KashanKashanIran
  3. 3.Department of Physics, Kashan BranchIslamic Azad UniversityKashanIran

Personalised recommendations