Applied Physics A

, 125:825 | Cite as

Physical study of cobalt ferrite and its application in purification of water

  • Rania RamadanEmail author


The purpose of this work to find the effect of magnetic material on adsorption of heavy metal cations (Cr6+, Cd2+ and Cu2+). Consequently, hexagonal cobalt ferrite (CoFe2O4) was prepared simply by flash method followed by calcination. The prepared sample was characterized using X-ray diffraction and FTIR which revealed the structure of nanoferrite. Field emission scanning electron microscopy and EDX explore the hexagonal-shaped product. The obtained results from surface area analysis (BET) showed that cobalt ferrite has large surface area (71.564 m2/g). The magnetic properties were studied by VSM and Faraday’s method from which the sample acts as ferromagnetic material with large value of saturation magnetization (66.380 emu/g). Electrical properties such as conductivity and activation energy were studied using LCR bridge; the data confirmed semiconductor behavior of sample. The sample under investigation exhibited very good adsorption efficiency for heavy metal cation (Cr6+, Cd2+ and Cu2+) from wastewater. The maximum adsorption appeared for Cd6+ at pH 6 and contact time 8 h.



  1. 1.
    G. Qi, H. Ren, H. Fan, Y. Liu, Chem. Eng. R Des. 147, 520 (2019)CrossRefGoogle Scholar
  2. 2.
    N. Song, S. Gu, Q. Wu, C. Li, J. Zhou, P. Zhang, W. Wang, M. Yue, J. Magn. Magn. Mater. 451, 793 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    V.H. Ojha, K.M. Kant, Phys. B 567, 87 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    N.V. Long, Y. Yang, T. Teranishi, Y. Thi, M.N. Cao, Mater. Des. 86, 797 (2015)CrossRefGoogle Scholar
  5. 5.
    N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, G.M. Cao, M.Y. Nogami, J Nanosci Nanotechnol 15, 10091 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Sedlacik, V. Pavlinek, P. Peerd, P. Filip, Dalton Trans. 43, 6919 (2014)CrossRefGoogle Scholar
  7. 7.
    N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, J. Nanosci. Nanotechnol. 15, 1009 (2015)CrossRefGoogle Scholar
  8. 8.
    M.A. Ahmed, T.B. Samiha, R. Ramadan, Nanosci Technol 9, 064 (2015)Google Scholar
  9. 9.
    K.C. Grätzel, J. Am. Chem. Soc. 128, 15714 (2006)CrossRefGoogle Scholar
  10. 10.
    A.E. Burakova, E.V. Galunina, I.V. Burakova, A.V. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Ecotoxicol. Environ. Saf. 148, 702 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Liu, K. Zhou, Q. Chen, A. Wang, W. Chen, J. Alloys Compd. 773, 140 (2019)CrossRefGoogle Scholar
  12. 12.
    M.A. Ahmed, T.B. Samiha, S.M. Abd-Elwahab, R. Ramadan, J. Mol. Liq. 240, 604 (2017)CrossRefGoogle Scholar
  13. 13.
    R.N. Bhowmik, A.K. Sinha, J. Magn. Magn. Mater. 421, 120 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    S.V. Vijayasundaram, G. Suresh, R. Kanagadurai, Nanostruct. Nanoobjects 8, 1 (2016)Google Scholar
  15. 15.
    S. Wang, Y. Zhao, H. Xue, J. Xie, C. Feng, H. Li, D. Shi, S. Muhammad, Q. Jiao, Mater. Lett. 223, 186 (2018)CrossRefGoogle Scholar
  16. 16.
    B.J. Rani, M. Ravina, B.S. Kumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Nanostruct. Nanoobjects 14, 84 (2018)Google Scholar
  17. 17.
    M. Qasi, K. Asghar, D. Das, Ceram. Int. (in press)Google Scholar
  18. 18.
    K. Raj, B. Moskowitz, R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    K. Niihar, J. Ceram. Soc. 99, 974 (1991)CrossRefGoogle Scholar
  20. 20.
    C. Kern, J. Depeyrot, J. Nano Res. 18, 138 (2016)CrossRefGoogle Scholar
  21. 21.
    M.A. Gabal, A.A. Al-Juaid, S.M. Al-Rashed, M.A. Hussein, F. Al-Marzouki, J. Magn. Magn. Mater. 426, 670 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    H.B. Sharma, K.N. Devi, V. Gupta, J.H. Lee, S.B. Singh, J. Compd. 599, 32 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Pandit, K.K. Sharma, P. Kaur, R.K. Kotnala, J. Shah, R. Kumar, J. Phys. Chem. Solids 75, 558 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Gabal, S.S. Ata-Allah, Chem. Phys. 85, 104 (2004)Google Scholar
  25. 25.
    M.S. Selim, G. Turky, M.A. Shouman, G.A. El-Shobaky, Solid State Ionics 120, 173 (1999)CrossRefGoogle Scholar
  26. 26.
    D.M. War, D.N. Avadh, B.D. Prasad, B.M. Naga, H. Naga, S.C. Sharma, C. Shiva, J.L. Rao, N.O. Gopal, S. Chu, R.P.S. Chakradhar, J. Magn. Magn. Mater. 339, 40 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    A. Aslama, M.U. Islama, I. Alia, M.S. Awanb, M. Irfana, A. Iftikhara, Ceram. Int. 40, 155 (2014)CrossRefGoogle Scholar
  28. 28.
    Z.Y. Zou, Z. Shi, L. Deng, RSC Adv. 7, 5195 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Ju, Y. Yu, X. Wang, M. Xiang, L. Li, D. Deng, D.D. Dionysiou, J. Hazard. Mater. 323, 611 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S. Khameneh, G. Youse, L. Karimi, J. Magn. Magn. Mater. 361, 150 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    I. Sadiq, S. Naseem, N. Ashiq, M. Khan, M.A. Niaz, S. Rana, Prog. Nat. Sci. Mater. Int. 25, 419 (2015)CrossRefGoogle Scholar
  32. 32.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Science Lab (1), Physics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations