Applied Physics A

, 125:833 | Cite as

Synthesis and characterization of Ti-doped Bi4O4S3 superconductor

  • João Frederico Haas Leandro MonteiroEmail author
  • Marcos Vinicius Woiski Barcote
  • Alcione Roberto Jurelo
  • Ezequiel Costa Siqueira


The substitution effects of 3d2 transition metal Ti on the Bi4O4S3 superconductor structure were studied. The presence of Ti in Bi2O2 layer spacer or superconducting BiS2 layers was investigated. For this study, the polycrystalline Bi4O4S3 superconductor was prepared following a two-step solid-state reaction. Grains consisted of lamellae, ~ 5–10 μm in the planar orientation and 100–500 nm thick, presenting a tetragonal crystalline structure, with space group I4/mmm. For the first time, Raman spectroscopy revealed three modes at room temperature, with no significant changes in the spectra with Ti doping. The superconductivity was observed by the Meissner effect from ZFC and FC magnetization measurements. For both samples, the critical temperature was around 3.5 K, showing that Ti doping did not change the TC value, probably due to fact that Ti is in the Bi2O2 layer spacer. Also, the doped sample presented a strong positive magnetic moment, probably due to the presence of ferromagnetic order.



The authors are grateful to the C-LABMU/UEPG for the characterization facilities and also to Dr. O. F. Lima for the magnetization measurements. This work was partially financed by CNPq under contract no. 472.746/2013-8.


  1. 1.
    Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, O. Miura, BiS2-based layered superconductor Bi4O4S3. Phys. Rev. B 86(22), 220510(R)–220514(R) (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Miura, Y. Mizuguchi, T. Sugawara, Y. Wang, T. Takei, N. Kumada, E. Magome, C. Moriyoshi, Y. Kuroiwa, O. Miura, K. Tadanaga, Structural difference in superconductive and nonsuperconductive Bi-S planes within Bi4O4Bi2S4 blocks. Inorg. Chem. 54(21), 10462–10467 (2015)CrossRefGoogle Scholar
  3. 3.
    C.I. Sathish, H.L. Feng, Y. Shi, K. Yamaura, Superconductivity in bismuth oxysulfide Bi4O4S3. J. Phys. Soc. Jpn. 82(7), 74703–74708 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Okada, H. Ogino, J. Shimoyama, K. Kishio, Topotactic synthesis of a new Bi2(O, F)S2. Appl. Phys. Express 8(2), 23102–23106 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, O. Miura, Superconductivity in novel BiS2-based layered superconductor LaO1 xFxBiS2. J. Phys. Soc. Jpn. 81(11), 114725–114729 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    X. Lin, X. Ni, B. Chen, X. Xu, X. Yang, J. Dai, Y. Li, X. Yang, Y. Luo, Q. Tao, G. Cao, Z. Xu, Superconductivity induced by La doping in Sr1 xLaxFBiS2. Phys. Rev. B 87(2), 20504(R)–20507(R) (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A. Krzton-Maziopa, Z. Guguchia, E. Pomjakushina, V. Pomjakushin, R. Khasanov, H. Luetkens, P.K. Biswas, A. Amato, H. Keller, K. Conder, Superconductivity in a new layered bismuth oxyselenide: LaO0.5F0.5BiSe2. J. Phys. Condens. Matter 26, 215702–215706 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Zhai, P. Zhang, S. Wu, C. He, Z. Tang, H. Jiang, Y. Sun, J. Bao, I. Nowik, I. Felner, Y. Zeng, Y. Li, X. Xu, Q. Tao, Z. Xu, G. Cao, Anomalous Eu valence state and superconductivity in undoped Eu3Bi2S4F4. J. Am. Chem. Soc. 136(43), 15386–15393 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. Feng, X. Yin, Y. Cao, X. Peng, T. Gao, C. Yu, J. Chen, B. Kang, B. Lu, J. Guo, Q. Li, W. Tseng, Z. Ma, C. Jing, S. Cao, J. Zhang, N.C. Yeh, Mn-doping induced ferromagnetism and enhanced superconductivity in Bi4 xMnxO4S3 (0.075 %3c x %3c 0.15). Phys. Rev. B 94(6), 64522–64530 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    D. Yazici, K. Huang, B.D. White, I. Jeon, V.W. Burnett, A.J. Friedman, I.K. Lum, M. Nallaiyan, S. Spagna, M.B. Maple, Superconductivity induced by electron doping in La1 xMxOBiS2 (M = Ti, Zr, Hf, Th). Phys. Rev. B 87(17), 174512–174519 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS). Los Alamos Natl. Lab. Rep. LAUR 86, 1–224 (1994)Google Scholar
  12. 12.
    B.H. Toby, EXPGUI, A graphical user interface for GSAS. J. Appl. Crystallogr 34, 210–213 (2001)CrossRefGoogle Scholar
  13. 13.
    T.G. Kumary, J. Janaki, V.S. Sastry, Y. Hariharan, M.C. Valsakumar, Effect of annealing and granularity on the physical properties of GdSr2RuCu2O8. Phys. C 443, 69–76 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S.F. Wu, P. Richard, X.B. Wang, C.S. Lian, S.M. Nie, J.T. Wang, N.L. Wang, H. Ding, Raman scattering investigation of the electron-phonon coupling in superconducting Nd(O, F)BiS2. Phys. Rev. B 90(5), 54519–54523 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Transit. 76(1–2), 155–170 (2003)CrossRefGoogle Scholar
  16. 16.
    S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515–568 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Tian, A. Zhang, K. Liu, J. Ji, J. Liu, X. Zhu, H. Wen, F. Jin, X. Ma, R. He, Q. Zhang, Raman scattering in superconducting NdO1 xFxBiS2 crystals. Supercond. Sci. Technol. 29, 15007–15012 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Mizuguchi, Recent advances in layered metal chalcogenides as superconductors and thermoelectric materials. Chem. Rec. 16, 633–651 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • João Frederico Haas Leandro Monteiro
    • 1
    Email author
  • Marcos Vinicius Woiski Barcote
    • 1
  • Alcione Roberto Jurelo
    • 1
  • Ezequiel Costa Siqueira
    • 2
  1. 1.Departamento de FísicaUniversidade Estadual de Ponta GrossaPonta GrossaBrazil
  2. 2.Physics DepartmentFederal Technological University of ParanaPonta GrossaBrazil

Personalised recommendations