Advertisement

Applied Physics A

, 125:808 | Cite as

Effect of selenization temperature on the formation of CZTSe absorber layer

  • Vishvas Kumar
  • Udai P. SinghEmail author
Article

Abstract

Cu2ZnSnSe4 (CZTSe) thin-films were deposited on soda-lime glass (SLG) and Mo/SLG substrate by the thermal evaporation method. The deposition was followed by two-step annealing in Se atmosphere. It was found that the selenization temperature significantly affects the phase, surface morphology, optical properties and electrical properties of the films. The crystallinity of the films has been improved with a variation of annealing temperature from 400 °C to 500 °C. With an increase in annealing temperature binary phase of the film also disappeared. The optical band gap of the CZTSe film has varied from 1.33 eV to 1.12 eV with the variation of selenization temperature. The impurity present in the film also reduced with the increase in selenization temperature. This work gives the idea of the effect of selenization temperature on structural, optical and electrical properties of CZTSe film deposited using thermal evaporation technique. The good-quality film obtained can be further processed for device application.

Notes

Acknowledgments

This work is supported by DST_SERB, New Delhi under grant# EMR/2017/002196 and MNRE under grant # 31/13/2013-14/PVSE-R&D. The authors would like to thanks Dr. Nandu Chaure (Savitribai Phule Pune University) for Raman and Mr. S K Taheruddin (IIEST, Shibpur, Howrah) for FESEM characterization.

References

  1. 1.
    K.S. Gour, O.P. Singh, A.K. Yadav, R. Parmar, V.N. Singh, Effect of NaF evaporation on morphological and structural properties of Cu2ZnSnSe4 (CZTSe) thin film deposited by sputtering from a single compound target. J. Alloys Compd. 25(718), 231–235 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Chang, H. Jialiang, S. Kaiwen, J. Steve, Z. Yuanfang, S. Heng, P. Aobo, H. Mingrui, L. Fangyang, E. Katja, Y. Limei, M.C. Julie, N.J. Ekins-Daukes, ASSCh. John, A. Martin, Green and Xiaojing Hao, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy 3, 764–772 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobé, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez, P. Pistor, How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy Environ. Sci. 11, 582–593 (2018)CrossRefGoogle Scholar
  4. 4.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 1301465 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Cherouana, R. Labbani, Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl. Surf. Sci. 424, 251–255 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    R.B. Chalapathy, M.G. Gang, C.W. Hong, J.H. Kim, J.S. Jang, J.H. Yun, J.H. Kim, Performance of CZTSSe thin film solar cells fabricated using a sulfo-selenization process: Influence of the Cu composition. Sol. Energy 1(159), 260–269 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    M. Nakashima, T. Yamaguchi, S. Yukawa, J. Sasano, M. Izaki, Effect of annealing on the morphology and compositions of Cu2ZnSnSe4 thin films fabricated by thermal evaporation for solar cells. Thin Solid Film 1(621), 47–51 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S. Padhy, A. Basak, U.P. Singh, Effect of HCl and NH4OH etching on CZTSSe absorber layer. Vacuum 1(155), 336–338 (2018)Google Scholar
  9. 9.
    Y. Wei, D. Zhuang, M. Zhao, Q. Gong, R. Sun, G. Ren, Y. Wu, L. Zhang, X. Lyu, X. Peng, An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization. Sol. Energy 1(164), 58–64 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    M. Valdés, A. Hernández-Martinez, Y. Sánchez, F. Oliva, E. Saucedo, Cu2ZnSnSe4 based solar cells combining co-electrodeposition and rapid thermal processing. Sol. Energy 173, 955–963 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Sayed, J. Schoneberg, J. Parisi, L. Guetay, Influence of silver incorporation on CZTSSe solar cells grown by spray pyrolysis. Mater. Sci. Semiconduct. Process. 15(76), 31–36 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Xue, B. Yu, W. Li, S. Feng, Y. Wang, S. Huang, C. Zhang, Z. Qiao, Effect of annealing atmosphere on properties of Cu2ZnSn (S, Se)4 thin films. Superlattices Microstruct. 1(112), 311–317 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Marcel Placidi, MoisesEspindola-Rodriguez, Simon Lopez-Marino, Yudania Sanchez and Edgardo Saucedo, Effect of rapid thermal annealing on the Mo back contact properties for Cu2ZnSnSe4 solar cells. J. Alloy Compd. 675, 158–162 (2016)CrossRefGoogle Scholar
  14. 14.
    W.C. Chen, V. Tunuguntla, H.W. Li, C.Y. Chen, S.S. Li, J.S. Hwang, C.H. Lee, L.C. Chen, K.H. Chen, Fabrication of Cu2ZnSnSe4 solar cells through multi-step selenization of layered metallic precursor film. Thin Solid Films 1(618), 42–49 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wei, D. Zhuang, M. Zhao, Q. Gong, R. Sun, G. Ren, Y. Wu, L. Zhang, X. Lyu, X. Peng, J. Wei, An investigation on the relationship between open circuit voltage and grain size for CZTSSe thin film solar cells fabricated by selenization of sputtered precursors. J. Alloys Compd. 30(773), 689–697 (2019)CrossRefGoogle Scholar
  16. 16.
    M. Dimitrievska, A. Fairbrother, R. Gunder, G. Gurieva, H. Xie, E. Saucedo, A. Pérez-Rodríguez, V. Izquierdo-Roca, S. Schorr, Role of S and Se atoms on the microstructural properties of kesterite Cu 2 ZnSn (S x Se 1–x) 4 thin film solar cells. Phys. Chem. Chem. Phys. 18(12), 8692–8700 (2016)CrossRefGoogle Scholar
  17. 17.
    NIST (2018) X-Ray Mass Attenuation Coefficients – Table-3, http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3html Accessed 10 oct 2018
  18. 18.
    L. Guen, W.S. Glaunsinger, Electrical, magnetic, and EPR studies of the quaternary chalcogenides Cu2AIIBIVX4 prepared by iodine transport. J. Solid State Chem. 35(1), 10–21 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    Jianjun Li, Yi Zhang, Hongxia Wang, Wu Li, Jiguo Wang, Wei Liu, Zhiqiang Zhou, Qing He, Yun Sun, On the growth process of Cu2ZnSn(S, Se)4 absorber layer formed by selenizing Cu–ZnS–SnS precursors and its photovoltaic performance. Sol. Energy Mater. Sol. Cells 132, 363–371 (2015)CrossRefGoogle Scholar
  20. 20.
    S.S. Fouad, I.M. El Radaf, P. Sharma, M.S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J. Alloys Compd. 15(757), 124–133 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Rawat, P.K. Shishodia, Thermal annealing induced modification on structural and optical properties of Cu2ZnSnS4 thin films for solar cell application. Superlattice Microstruct. 1(122), 444–452 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloy. Compd. 509, 7600–7606 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Wei, D. Zhuang, M. Zhao, Q. Gong, R. Sun, G. Ren, Y. Wu, L. Zhang, X. Lyu, X. Peng, An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization. Sol. Energy 1(164), 58–64 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Jianjun Li, SeongYeon Kim, Dahyun Nam, Xiaoru Liu, Yi Zhang Tailoring the defects and carrierdensity for beyond 10% efficient CZTSe thin film solar cells. Sol. Energy Mater. Sol. Cells 159, 447–455 (2017)CrossRefGoogle Scholar
  25. 25.
    C. Sripan, V.E. Madhavan, A.K. Viswanath, R. Ganesan, Sulfurization and annealing effects on thermally evaporated CZTS films. Mater. Lett. 15(189), 110–113 (2017 )CrossRefGoogle Scholar
  26. 26.
    Condensed Matter, TarunChandel, M BurhanuzZaman, NilanjanBasu, JayeetaLahiri and RajaramPoolla, Growth and properties of solvothermally derived CZTSe nanocrystalsusingelemental precursors, Physica B. Phys. B 545, 262–267 (2018)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Jianjun Li, H. Wang, W. Li, C. Chen, Z. Zhou, F. Liu, Y. Sun, J. Han, Y. Zhang, Growth of CZTSe film under controllable Se vapour composition and impact of low Cu content on solar cell efficiency. ACS Appl. Mater. Interfaces 16, 10283–10292 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Henry, K. Mohanraj, G. Sivakumar, Electrical and optical properties of CZTS thin films prepared by SILAR method. J. Asian Ceram. Soc. 4, 81–84 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thin Film Photovoltaic Lab, School of Electronics EngineeringKIIT (Deemed to be University)BhubaneswarIndia

Personalised recommendations