Advertisement

Applied Physics A

, 125:815 | Cite as

Antireflective coatings with high damage threshold prepared by laser ablation

  • M. FilipescuEmail author
  • A. Palla-Papavlu
  • A. Bercea
  • L. Rusen
  • M. O. Cernaianu
  • V. Ion
  • A. Calugar
  • L. C. Nistor
  • M. Dinescu
T.C.: Dedicated to Maria Dinescu
  • 54 Downloads

Abstract

Latest developments in the field of high power ultra-short pulse lasers have led to intensive studies dedicated to the fabrication possibility of new antireflective coatings which exhibit high damage threshold. Therefore, this study is focused on the deposition and characterization of metal oxide heterostructures followed by laser-induced damage threshold tests which evidence their application in high power laser optics. Al2O3, SiO2, and HfO2 layers are combined to obtain different heterostructures, i.e. HfO2/Al2O3/HfO2/Al2O3/HfO2 and HfO2/SiO2/HfO2/SiO2/HfO2. The metal oxide heterostructures are deposited in a controllable oxygen atmosphere, either at room temperature or high temperatures (600 °C) by pulsed laser deposition (PLD). The morphological, structural and optical properties of the as-deposited heterostructures are first investigated. Atomic force microscopy and spectroscopic ellipsometry investigations reveal a lower roughness of the heterostructures based on HfO2/Al2O3 layers grown at 600 °C as compared to those grown at room temperature. Furthermore, following the laser-induced damage threshold (LIDT) tests carried out with a Ti–Sapphire laser, higher LIDT values are obtained for the HfO2/Al2O3-based heterostructures than for the HfO2/SiO2-based heterostructures. The ability to control the morphological and structural properties of the antireflective coatings by modifying the deposition parameters of the metal oxide heterostructures demonstrates that PLD is a suitable technique for the manufacturing of antireflective coatings for high power ultra-short laser systems.

Notes

Acknowledgements

Financial support from the Romanian National Nucleus Program—contract 16 N/2019, the Romanian National Authority for Scientific Research and CNCS—UEFISCDI project number PN-II-PT-PCCA-2013-4-1870 (ARCOLAS), PN-III-P1-1.2-PCCDI-2017-0637 (MultiMonD2), and PN-III-P1-1.2-PCCDI-2017-0172 (TESTES), is gratefully acknowledged. M.O.Cernaianu acknowledges the support by the Extreme Light Infrastructure Nuclear Physics (ELI-NP) Phase II, a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme (1/07.07.2016, COP, ID 1334). The authors acknowledge the support of Dr. A. Moldovan and S. Brajnicov with the AFM measurements.

References

  1. 1.
    D. Ursescu, G. Cheriaux, P. Audebert, M. Kalashnikov, T. Toncian, M. Cerchez, M. Kaluza, G. Paulus, G. Priebe, R. Dabu, M.O. Cernaianu, M. Dinescu, T. Asavei, I. Dancus, L. Neagu, A. Boianu, C. Hooker, C. Barty, C. Haefner, Laser beam delivery at ELI-NP. Rom. Rep. Phys. 68(Supplement), S11–S36 (2016)Google Scholar
  2. 2.
    M.O. Cernaianu, B. De Boisdeffre, D. Ursescu, F. Negoita, C.A. Ur, O. Tesileanu, D. Balabanski, T. Ivanoaica, M. Ciubancan, M. Toma, I. Dancus, S. Gales, Monitoring and control systems for experiments at ELI-NP. Rom. Rep. Phys. 68(Supplement), S349–S443 (2016)Google Scholar
  3. 3.
    G.A. Mourou, G. Korn, W. Sandner, J.L. Collier (eds) WHITEBOOK ELI—Extreme light infrastructure; science and technology with ultra-intense lasers. Andreas Thoss, Berlin, Germany (2011)Google Scholar
  4. 4.
    T. Asavei, M. Tomut, M. Bobeica, S. Aogaki, M.O. Cernaianu, M. Ganciu, S. Kar, G. Manda, N. Mocanu, L. Neagu, C. Postolache, D. Savu, D. Stutman, D. Vizman, D. Ursescu, S. Gales, N.V. Zamfir, Materials in extreme environments for energy, accelerators and space applications at ELI-NP. Rom. Rep. Phys. 68, S275–S347 (2016)Google Scholar
  5. 5.
    A. Bercea, M. Filipescu, A. Moldovan, S. Brajnicov, D. Colceag, V. Ion, L.C. Nistor, A. Zorila, M. Dinescu, Optical coatings for ELI experiments prepared by laser ablation. Rom. J. Phys. 63, 606 (2018)Google Scholar
  6. 6.
    K. Pfeiffer, L. Ghazaryan, U. Schulz, A. Szeghalmi, Wide-angle broadband antireflection coatings prepared by atomic layer deposition. ACS Appl. Mater. Interfaces 11, 21887–21894 (2019)CrossRefGoogle Scholar
  7. 7.
    M.K. Smit, G.A. Acket, C.J. Van der Laan, Al2O3 films for integrated optics. Thin Solid Films 138(2), 171–181 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    M. Filipescu, N. Scarisoreanu, V. Craciun, B. Mitu, A. Purice, A. Moldovan, V. Ion, O. Toma, M. Dinescu, High-k dielectric oxides obtained by PLD as solution for gates dielectric in MOS devices. Appl. Surf. Sci. 253, 8184–8191 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    A. Pillonnet, C. Garapon, C. Champeaux, C. Bovier, R. Brenier, H. Jaffrezic, J. Mugnier, Influence of oxygen pressure on structural and optical properties of Al2O3 optical waveguides prepared by pulsed laser deposition. Appl. Phys. A. 69, 735–738 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785 (2000)CrossRefGoogle Scholar
  11. 11.
    A.M.B. Van Mol, Y. Chae, A.H. McDaniel, M.D. Allendorf, Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films 502(1–2), 72–78 (2006)ADSGoogle Scholar
  12. 12.
    M. Skolik, A. Domanowska, P. Karasinski, E. Gondek, A. Michalewicz, Double layer sol-gel derived antireflective coatings on silicon—design, optical and auger electron spectroscopy characterization. Mater. Lett. 251, 210–213 (2019)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, J. Zhang, H. Jiao, G. Bao, Z. Wang, X. Cheng, Thickness-dependent surface morphology and crystallization of HfO2 coatings prepared with ion-assisted deposition. Thin Solid Films 642, 359–363 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A.Q. Wang, J. Wang, M.J. D’Iallo, J.E. Platten, J.C. Crifasi, B.P. Roy, HfO2/SiO2 multilayer enhanced aluminum alloy-based dual-wavelength high reflective optics, Thin Solid Films, 592(Part B), 232–236 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    M. Ion, C. Berbecaru, S. Iftimie, M. Filipescu, M. Dinescu, S. Antohe, PLD deposited Al2O3 thin films for transparent electronics. Dig. J. Nanomater. Biostruct. 7(4), 1609–1614 (2012)Google Scholar
  16. 16.
    M. Filipescu, A. Palla-Papavlu, M. Dinescu, P. Mandracci, in Crystalline and Non-crystalline Solids, ed. by P. Mandracci. Chapter 3: Functional Metal Oxide Thin Films Grown by Pulsed Laser Deposition (INtech Publishers, UK, 2017), Intech, Croatia, pp. 37–55Google Scholar
  17. 17.
    A. Stratan, A. Zorila, L. Rusen, G. Nemes, Measuring effective area of spots from pulsed laser beams. Opt. Eng. 53(12), 122513 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Zorila, L. Rusen, A. Stratan, G. Nemes, Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments. Opt. Eng. 52(5), 054203 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    A. Stratan, G. Nemes, C. Fenic, A. Zorila, L. Rusen, S. Simion, C. Blanaru, L. Neagu, Automated test station for laser-induced damage threshold measurements according to ISO 21254-1,2,34 standards, Proceedings of SPIE 8530 (2012)Google Scholar
  20. 20.
    C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multiwavelength, multi-angle investigation. J. Appl. Phys. 83, 6 (1998)CrossRefGoogle Scholar
  21. 21.
    H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Maruzen Co. Ltd, Tokyo, 2007). 978-0-470-01608-4 CrossRefGoogle Scholar
  22. 22.
    A.P. Joglekar, H. Liu, G.J. Spooner, E. Meyhöfer, G. Mourou, A.J. Hunt, A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77(1), 25–30 (2003)CrossRefGoogle Scholar
  23. 23.
    N. Bloembergen, Laser-induced electric breakdown in solids. IEEE J. Quantum Electron. 10, 375–386 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, A. Melninkaitis, Next generation highly resistant mirrors featuring all-silica layers. Sci. Rep. 7, 10898 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    J. Bonse, S. Baudach, W. Kautek, E. Welsch, J. Kruger, Femtosecond laser damage of a high reflecting mirror. Thin Solid Films 408, 297–301 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, R. Drazdys, Femtosecond laser damage resistance of oxide and mixture oxide optical coatings, Opt. Lett. 37(9), 1478–1480 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    L. Gallais, M. Commandré, Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 53(4), A186–A196 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    D. Ristau, M. Jupé, K. Starke, Laser damage thresholds of optical coatings. Thin Solid Films 518(5), 1607–1613 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    B.J. Nagy, L. Vamos, D. Oszetzki, P. Racz, P. Dombi, Femtosecond damage threshold at kHz and MHz pulse repetition rates. Proc. SPIE 9237, 923711 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Ďurák, D. Kramer, P.K. Velpula, A.R. Meadows, J. Cupal, B. Rus, Comparison of different LIDT testing protocols for PW and multi-PW class high reflectivity coatings, in Proc. SPIE 10014, Laser-Induced Damage in Optical Materials 2016, vol. 10014, eds. by G.J. Exarhos, V.E. Gruzdev, J.A. Menapace, D. Ristau, M.J. Soileau, (2016).  https://doi.org/10.1117/12.2245182

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Filipescu
    • 1
    Email author
  • A. Palla-Papavlu
    • 1
  • A. Bercea
    • 1
  • L. Rusen
    • 1
  • M. O. Cernaianu
    • 2
  • V. Ion
    • 1
  • A. Calugar
    • 1
    • 3
  • L. C. Nistor
    • 4
  • M. Dinescu
    • 1
  1. 1.National Institute for Lasers, Plasma, and Radiation PhysicsMăgureleRomania
  2. 2.“Horia Hulubei” National Institute for Physics and Nuclear Engineering, Extreme Light Infrastructure-Nuclear Physics ELI-NPBucharest-MăgureleRomania
  3. 3.Faculty of PhysicsUniversity of BucharestMăgureleRomania
  4. 4.National Institute of Materials PhysicsMăgureleRomania

Personalised recommendations