Advertisement

Applied Physics A

, 125:801 | Cite as

Assessment of nuclear shielding and alpha/proton mass stopping power properties of various metallic glasses

  • Ufuk PerişanoğluEmail author
Article
  • 35 Downloads

Abstract

This work aimed to investigate alpha, proton, neutron and gamma shielding qualifications of different bulk metallic glasses (Zr65Al7.5Ni10Cu17.5, Ti40Zr26Be28Fe6, Cu49Hf42Al9, Pd40Ni40P20, Ni50Pd30P20, and Ca65Mg15Zn20) for nuclear security applications. Therefore, vital gamma radiation attenuation parameter namely mass attenuation coefficients (\(\mu_{\rho }\)) of investigated bulk metallic glasses (BMG) were determined using WinXCOM program. Next, half value layer (HVL), effective atomic number (Zeff), effective electron density (Nel) and exposure buildup factors (EBF) were perused in a wide energy interval (0.02–20 MeV). Among the investigated samples, MG3 was found to be superior attenuator sample for gamma radiation, while MG6 was the least forceful glasses to reduce the photon intensity. The elements Pd and Hf in MG4, MG5 and MG3 were enhanced radiation shielding competences of the BMGs. Further, fast neutron removal cross-sections (\(\sum R\)) were evaluated to investigate neutron protection ability of the BMGs. Projected range (PR) and mass stopping power (MSP) values were obtained for proton (H1) and alpha particles (He+2). The outcomes showed that elemental composition of the metallic glasses was highly powerful on alpha, proton and neutron attenuation. It can be concluded that MG3 sample exhibited high nuclear shielding efficiency as deduced from the largest \(\mu_{\rho }\), Zeff, and \(\sum R\), and the lowest HVL, EBF, MSP and PR values.

Notes

References

  1. 1.
    B. Oto, N. Yildiz, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. (2015).  https://doi.org/10.1016/j.nucengdes.2015.07.060 CrossRefGoogle Scholar
  2. 2.
    I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite. Radiat. Meas. (2010).  https://doi.org/10.1016/j.radmeas.2010.04.012 CrossRefGoogle Scholar
  3. 3.
    E.S.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy (2016).  https://doi.org/10.1016/j.anucene.2016.05.028 CrossRefGoogle Scholar
  4. 4.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: part 2. J. Non-Cryst Solids (2017).  https://doi.org/10.1016/j.jnoncrysol.2017.08.011 CrossRefGoogle Scholar
  5. 5.
    N. Ekinci, E. Kavaz, B. Aygün, U. Perişanoğlu, Gamma ray shielding capabilities of rhenium-based superalloys. Radiat. Eff. Defects Solids 0150, 1–17 (2019).  https://doi.org/10.1080/10420150.2019.1596110 CrossRefGoogle Scholar
  6. 6.
    N.S. Prabhu, V. Hegde, M.I. Sayyed, O. Agar, S.D. Kamath, Investigations on structural and radiation shielding properties of Er 3+ doped zinc bismuth borate glasses. Mater. Chem. Phys. (2019).  https://doi.org/10.1016/j.matchemphys.2019.03.074 CrossRefGoogle Scholar
  7. 7.
    E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. (2019).  https://doi.org/10.1016/j.radphyschem.2019.03.032 CrossRefGoogle Scholar
  8. 8.
    E. Kavaz, H.O. Tekin, N.Y. Yorgun, F. Özdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: Experimental and Monte Carlo study. Radiat. Phys. Chem. (2019).  https://doi.org/10.1016/j.radphyschem.2019.05.019 CrossRefGoogle Scholar
  9. 9.
    E. Kavaz, N.Y. Yorgun, Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloy Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.04.106 CrossRefGoogle Scholar
  10. 10.
    M.I.Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3. Progress Nucl. Energy. (2020). 10.1016/j.pnucene.2019.103118.Google Scholar
  11. 11.
    M.I. Sayyed, K.M. Kaky, M.H.A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application. Radiat. Phys. Chem. (2019).  https://doi.org/10.1016/j.radphyschem.2019.04.005 CrossRefGoogle Scholar
  12. 12.
    S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses. Mater. Chem. Phys. (2018).  https://doi.org/10.1016/j.matchemphys.2018.01.058 CrossRefGoogle Scholar
  13. 13.
    S.A.M. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. (2019).  https://doi.org/10.1016/j.matchemphys.2018.10.064 CrossRefGoogle Scholar
  14. 14.
    S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi 2 O 3 content on mechanical and nuclear radiation shielding properties of Bi 2 O 3 -MoO 3 -B 2 O 3 -SiO 2 -Na 2 O-Fe 2 O 3 glass system. Results Phys. (2019).  https://doi.org/10.1016/j.rinp.2019.102165 CrossRefGoogle Scholar
  15. 15.
    C.H. Wang, W.H. Dong, C. Shek, Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44(23), 45–89 (2004)Google Scholar
  16. 16.
    W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified Gold-Silicon alloys. Nature (1960).  https://doi.org/10.1038/187869b0 CrossRefGoogle Scholar
  17. 17.
    A. Inoue, H. Yamaguchi, T. Zhang, T. Masumoto, Al-La-Cu amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM. (1990).  https://doi.org/10.2320/matertrans1989.31.104 CrossRefGoogle Scholar
  18. 18.
    A. Inoue, T. Zhang, T. Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Mater. Trans. JIM. (1990).  https://doi.org/10.2320/matertrans1989.31.177 CrossRefGoogle Scholar
  19. 19.
    A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. (2000).  https://doi.org/10.1016/S1359-6454(99)00300-6 CrossRefGoogle Scholar
  20. 20.
    J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira, U.D. Schwarz, Z. Liu, R. Yamada, W. Dmowski, M.D. Shattuck, C.S. O’Hern, T. Egami, E. Bouchbinder, J. Schroers, Mechanical glass transition revealed by the fracture toughness of metallic glasses. Nat. Commun. (2018).  https://doi.org/10.1038/s41467-018-05682-8 CrossRefGoogle Scholar
  21. 21.
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. (2007).  https://doi.org/10.1016/j.actamat.2007.01.052 CrossRefGoogle Scholar
  22. 22.
    J. Qiao, H. Jia, P.K. Liaw, Metallic glass matrix composites. Mater. Sci. Eng. R Rep. (2016).  https://doi.org/10.1016/j.mser.2015.12.001 CrossRefGoogle Scholar
  23. 23.
    A. Khmich, K. Sbiaai, A. Hasnaoui, Structural behavior of Tantalum monatomic metallic glass. J. Non-Cryst. Solids (2019).  https://doi.org/10.1016/j.jnoncrysol.2019.01.024 CrossRefGoogle Scholar
  24. 24.
    A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. (2005).  https://doi.org/10.2320/matertrans.46.2817 CrossRefGoogle Scholar
  25. 25.
    A. Inoue, High strength bulk amorphous alloys with low critical cooling rates (Overview). Mater. Trans. JIM. (1995).  https://doi.org/10.2320/matertrans1989.36.866 CrossRefGoogle Scholar
  26. 26.
    A. Inoue, Bulk glassy alloys: historical development and current research. Engineering. (2015).  https://doi.org/10.15302/J-ENG-2015038 CrossRefGoogle Scholar
  27. 27.
    M. Chen, Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. (2008).  https://doi.org/10.1146/annurev.matsci.38.060407.130226 CrossRefGoogle Scholar
  28. 28.
    K.A. Avchaciov, Y. Ritter, F. Djurabekova, K. Nordlund, K. Albe, Controlled softening of Cu64Zr36 metallic glass by ion irradiation. Appl. Phys. Lett. (2013).  https://doi.org/10.1063/1.4804630 CrossRefGoogle Scholar
  29. 29.
    Y.H. Qiu, C. Xu, E.G. Fu, P.P. Wang, J.L. Du, Z.Y. Hu, X.Q. Yan, X.Z. Cao, Y.G. Wang, L. Shao, Mechanisms for the free volume tuning the mechanical properties of metallic glass through ion irradiation. Intermetallics (2018).  https://doi.org/10.1016/j.intermet.2018.08.006 CrossRefGoogle Scholar
  30. 30.
    S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3in gamma and neutron parameters for different concentration of ErCl3-SiO2(EDFA) for the signal protection from nuclear radiation. J Alloy Compd. (2017).  https://doi.org/10.1016/j.jallcom.2016.12.176 CrossRefGoogle Scholar
  31. 31.
    E. Kavaz, U. Perişanoğlu, N. Ekinci, Y. Özdemır, Determination of energy absorption and exposure buildup factors by using G-P fitting approximation for radioprotective agents. Int. J. Radiat. Biol. (2016).  https://doi.org/10.1080/09553002.2016.1175681 CrossRefGoogle Scholar
  32. 32.
    L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. (2004).  https://doi.org/10.1016/j.radphyschem.2004.04.040 CrossRefGoogle Scholar
  33. 33.
    O. Agar, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, H.O. Tekin, M.I. Sayyed, T.T. Erguzel, N. Tarhan, Er 2 O 3 effects on photon and neutron shielding properties of TeO 2 -Li 2 O-ZnO-Nb 2 O 5 glass system. Results Phys. (2019).  https://doi.org/10.1016/j.rinp.2019.102277 CrossRefGoogle Scholar
  34. 34.
    J.M. Sharaf, H. Saleh, Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures. Radiat. Phys. Chem. (2015).  https://doi.org/10.1016/j.radphyschem.2015.01.031 CrossRefGoogle Scholar
  35. 35.
    B. Oto, S.E. Gulebaglan, Z. Madak, E. Kavaz, Effective atomic numbers, electron densities and gamma rays buildup factors of inorganic metal halide cubic perovskites CsBX3 (B = Sn, Ge; X = I, Br, Cl). Radiat. Phys. Chem. 159, 195–206 (2019).  https://doi.org/10.1016/j.radphyschem.2019.03.010 ADSCrossRefGoogle Scholar
  36. 36.
    K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials. Ann. Nucl. Energy (2012).  https://doi.org/10.1016/j.anucene.2012.01.004 CrossRefGoogle Scholar
  37. 37.
    K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates. Ann. Nucl. Energy (2013).  https://doi.org/10.1016/j.anucene.2012.08.024 CrossRefGoogle Scholar
  38. 38.
    E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019).  https://doi.org/10.1016/j.pnucene.2019.03.029 CrossRefGoogle Scholar
  39. 39.
    J.F. Ziegler, SRIM-2003, In: Nuclear ınstruments and methods in physics research, section B: beam ınteractions with materials and atoms (2004) doi:10.1016/j.nimb.2004.01.208.CrossRefGoogle Scholar
  40. 40.
    F. James, J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM, the stopping and range of ions in matter. Nucl. Instrum. Methods Physics Res. B. (2008).  https://doi.org/10.1016/j.nimb.2004.01.208.4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceAtaturk UniversityErzurumTurkey

Personalised recommendations