Advertisement

Applied Physics A

, 125:805 | Cite as

Thermal decomposition of ferritin core

  • Navneet Kaur
  • S. D. TiwariEmail author
Article
  • 29 Downloads

Abstract

Ferritin is an iron storage protein found in living organisms. It is an antiferromagnetic nanoparticle system consisting of an inorganic core surrounded by a protein shell. Ferritin is characterized by X-ray diffractometer, transmission electron microscope, atomic absorption spectrometer and thermogravimetric analyzer. We find that the ferritin core is poorly crystalline, 8 nm in size and consists of 10 wt% iron. It is believed that cores of ferritin consist of single-phase inorganic mineral ferrihydrite. Recently, we have shown that ferrihydrite decomposes directly to \(\alpha\)-\(\hbox {Fe}_{{2}}\hbox {O}_{3}\) on heating in air at 440 \(^{\circ }\)C. In the present work, we show that ferritin cores gradually decompose to a mixture of \(\gamma\)-\(\hbox {Fe}_{{2}}\hbox {O}_{{3}}\) and \(\alpha\)-\(\hbox {Fe}_{{2}}\hbox {O}_{{3}}\) on heating in air. This mixture finally stabilizes to \(\alpha\)-\(\hbox {Fe}_{{2}}\hbox {O}_{{3}}\) on further heating. The magnetic behaviour of final sample is also studied. This work confirms that the ferritin cores contain more than one phase.

Notes

Acknowledgements

Financial support from University Grant Commission, India is thankfully acknowledged [Project Reference No. 39-537/2010(SR)].

References

  1. 1.
    I. S. Jacobs, C. P. Bean, in Magnetism, Vol. III edited by G. T. Rado, H. Suhl (Academic Press Inc., New York, 1963), p. 271Google Scholar
  2. 2.
    L. Néel, in Low Temperature Physics, ed. by C. Dewitt, B. Dreyfus, P.D. de Gennes (Gordan and Beach, New York, 1962), p. 413Google Scholar
  3. 3.
    R.W. Chantrell, K. O’Grady, in Applied Magnetism, ed. by R. Gerber, C.D. Wright, G. Asti (Kluwer Academic Publishers, Amsterdam, 1994), p. 113Google Scholar
  4. 4.
    R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)Google Scholar
  5. 5.
    A.S. Edelstein, R.C. Cammarata (eds.), Nanomaterials: Synthesis, Properties and Applications (Taylor & Francis, New York, 1996)Google Scholar
  6. 6.
    J.L. Jambor, J.E. Dutrizac, Chem. Rev. 98, 2549 (1998)Google Scholar
  7. 7.
    U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization (Wiley-VCH, Berlin, 2000)Google Scholar
  8. 8.
    F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, Science 316, 1726 (2007)ADSGoogle Scholar
  9. 9.
    M.S. Seehra, V.S. Babu, A. Manivannan, J.W. Lynn, Phys. Rev. B 61, 3513 (2000)ADSGoogle Scholar
  10. 10.
    M.S. Seehra, A. Punnoose, Phys. Rev. B 64, 132410 (2001)ADSGoogle Scholar
  11. 11.
    A. Punnoose, T. Phanthavady, M.S. Seehra, N. Shah, G.P. Huffman, Phys. Rev. B 69, 54425 (2004)ADSGoogle Scholar
  12. 12.
    C. Rani, S.D. Tiwari, J. Magn. Magn. Mater. 385, 272 (2015)ADSGoogle Scholar
  13. 13.
    C. Rani, S.D. Tiwari, Phys. B 513, 58 (2017)ADSGoogle Scholar
  14. 14.
    D.A. Balaev et al., J. Exp. Theor. Phys. Lett. 98, 139 (2013)Google Scholar
  15. 15.
    D.A. Balaev et al., J. Exp. Theor. Phys. 119, 479 (2014)Google Scholar
  16. 16.
    D.A. Balaev et al., Phys. Solid State 58, 1782 (2016)ADSGoogle Scholar
  17. 17.
    D.A. Balaev et al., J. Magn. Magn. Mater. 410, 171 (2016)ADSGoogle Scholar
  18. 18.
    C. Rani, S.D. Tiwari, Appl. Phys. A 123, 532 (2017)ADSGoogle Scholar
  19. 19.
    C. Rani, Ph. D. Thesis, Thapar Institute of Engineering & Technology, Patiala (2018)Google Scholar
  20. 20.
    J.M. Cowley, D.E. Janney, R.C. Gerkin, P.R. Buseck, J. Struct. Biol. 131, 210 (2000)Google Scholar
  21. 21.
    S.A. Makhlouf, F.T. Parker, A.E. Berkowitz, Phys. Rev. B 55, R14717 (1997)ADSGoogle Scholar
  22. 22.
    N.J.O. Silva et al., Phys. Rev. B 79, 104405 (2009)ADSGoogle Scholar
  23. 23.
    N.J.O. Silva et al., Phys. Rev. B 84, 104427 (2011)ADSGoogle Scholar
  24. 24.
    S.H. Kilcoyne, R. Cywinski, J. Magn. Magn. Mater. 140–144, 1466 (1995)ADSGoogle Scholar
  25. 25.
    N. Kaur, S.D. Tiwari, J. Phys. Chem. Solids 123, 279 (2018)ADSGoogle Scholar
  26. 26.
    P.M. Harrison, F.A. Fischbach, T.G. Hoy, G.H. Haggisi, Nature 216, 1188 (1967)ADSGoogle Scholar
  27. 27.
    K.M. Towe, W.F. Bradley, J. Colloid Interface Sci. 24, 384 (1967)ADSGoogle Scholar
  28. 28.
    S.M. Gorun, G.C. Papaefthymiou, R.B. Frankel, S.J. Lippard, J. Am. Chem. Soc. 109, 3337 (1987)Google Scholar
  29. 29.
    J.H. Jung, T.W. Eom, Y.P. Lee, J.Y. Rhee, E.H. Choi, J. Magn. Magn. Mater. 323, 3077 (2011)ADSGoogle Scholar
  30. 30.
    N.D. Chasteen, P.M. Harrison, J. Struct. Biol. 126, 182 (1999)Google Scholar
  31. 31.
    F. Brem, G. Stamm, A.M. Hirt, J. Appl. Phys. 99, 123906 (2006)ADSGoogle Scholar
  32. 32.
    N. Gálvez, B. Fernández, P. Sánchez, R. Cuesta, M. Ceolín, M. Clemente-León, S. Trasobares, M. López-Haro, J.J. Calvino, O. Stéphan, J.M. Domínguez-Vera, J. Am. Chem. Soc. 130, 8062 (2008)Google Scholar
  33. 33.
    M. Preisinger, M. Krispin, T. Rudolf, S. Horn, D.R. Strongin, Phys. Rev. B 71, 165409 (2005)ADSGoogle Scholar
  34. 34.
    M. Krispin, A. Ullrich, S. Horn, J. Nanopart. Res. 14, 669 (2012)ADSGoogle Scholar
  35. 35.
    S. Davis, in Colloid Science Principles, Methods and Applications edited by T. Cosgrove (Wiley, New York, 2010), p. 317Google Scholar
  36. 36.
    I.M. Weiss, C. Muth, R. Drumm, H.O.K. Kirchner, BMC Biophys. 11, 2 (2018)Google Scholar
  37. 37.
    V. de la Fuente et al., Minerals 8, 505 (2018)Google Scholar
  38. 38.
    M. Darbandi et al., J. Phys. D: Appl. Phys. 45, 195001 (2012)ADSGoogle Scholar
  39. 39.
    T. Swain, G.S. Brahma, J. Elect. Mater. 47, 2817 (2008)Google Scholar
  40. 40.
    M. Mobin, Sci. Eng. Compos. Mater. 8, 257 (1999)Google Scholar
  41. 41.
    M. Mobin, A.U. Malik, S. Ahmad, J. Less Common Metals 160, 1 (1990)Google Scholar
  42. 42.
    M. Brostrom, S. Enestam, R. Backman, K. Makela, Fuel Process. Technol. 105, 142 (2013)Google Scholar
  43. 43.
    S. Zhou, Y. Wei, B. Li, H. Wang, B. Ma, C. Wang, Sci. Rep. 6, 1 (2016)Google Scholar
  44. 44.
    T.A. Rafter, Analyst 75, 1485 (1950)Google Scholar
  45. 45.
    Y. Goto, Jpn. J. Appl. Phys. 3, 739 (1964)ADSGoogle Scholar
  46. 46.
    P. Ayyub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C: Solid State Phys. 21, 2229 (1988)ADSGoogle Scholar
  47. 47.
    Y. El Mendili, J.F. Bardeau, N. Randrianantoandro, J.M. Greneche, F. Grasset, Sci. Technol. Adv. Mater. 17, 597 (2016)Google Scholar
  48. 48.
    G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip, B. Raj, Nanotechnology 17, 5851 (2006)ADSGoogle Scholar
  49. 49.
    M. Tadica, M. Panjanb, V. Damnjanovic, I. Milosevic, Appl. Surf. Sci. 320, 183 (2014)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations