Applied Physics A

, 125:792 | Cite as

Double-band perfect absorber based on the dielectric grating and Fabry–Perot cavity

  • Fang ChenEmail author
  • Huafeng Zhang
  • Lihui Sun
  • Jijun Li
  • Chunchao Yu


To realize double-band perfect absorption, in this paper, we present a theoretical study of plasmonic absorption based on a metal–dielectric grating nanostructure. The structure consists of subwavelength periodic \( {\text{Al}}_{2} {\text{O}}_{3} \) grating covered with metal grating with a metal substrate. Results show that the one of the two absorption bands is caused by the Fabry–Perot resonance in the gold grating slits, and the other absorption band is caused by the gap plasmonic resonance of the \( {\text{Al}}_{2} {\text{O}}_{3} \) dielectric grating. The effect of structural parameters on absorption is also studied, the field distribution of the proposed nanostructure is presented to illustrate the absorption mechanism. Moreover, the two absorption peaks can be adjusted individually with different geometrical parameters. The results will pave the way towards the design of double-band plasmonic perfect absorber, which may have potential application in plasmonic absorption switch, plasmonic sensors and photodetectors.



Supported by The Yangtze Youth Fund (Grant no. 2016cqn55), Yangtze Fund for college students’ innovation and entrepreneurship (Grant no. 2018173). Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant no. 2015cqt03), National Natural Science Foundation of China (Grant no. 11747091).


  1. 1.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Y.Q. Ye, Y. Jin, S. He, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 27(3), 498–504 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time reversed lasers. Phys. Rev. Lett. 105(5), 053901 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D. Dutta-Gupta, O.J.F. Martin, S.D. Gupta, G.S. Agarwal, Controllable coherent perfect absorption in a composite film. Opt. Express 20(2), 1330–1336 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kang, F. Liu, T.F. Li, Q.H. Guo, J. Li, J. Chen, Polarization independent coherent perfect absorption by a dipole-like metasurface. Opt. Lett. 38(16), 3086–3088 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 12(1), 440 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Rosenberg, R.V. Shenoi, T.E. Vandervelde, S. Krishna, O. Painter, A multispectral and polarization selective surface plasmon resonnat midinfrared detector. Appl. Phys. Lett. 95(16), 161101 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, High harmonic generation by resonant plasmon field enhancement. Nature 453(7196), 757–760 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Cheng, M.N. Abdas, C.W. Chiu, K.T. Lai, M.H. Shih, Y.C. Chang, Wide angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt. Express 20(9), 10376–10381 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Grant, Y. Ma, S. Saha, A. Khalid, D.R. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36(17), 3476–3478 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, M. Qiu, Ultra narrow band light dissipation by a stack of lamellar silver and alumina. Appl. Phys. Lett. 104(22), 221107 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S.W. Shu, Y.Y. Li, Metallic rugate structures for near perfect absorbers in visible and near infrared regions. Opt. Lett. 37(17), 3495–3497 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.M. Lee, J.C. Wu, A wide angle dual band infrared perfect absorber based on metal-dielectric-metal split square ring and square array. J. Phys. D Appl. Phys. 45(20), 205101 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Z.Q. Liu, M.D. Yu, S. Huang, X.S. Liu, Y. Wang, M.L. Liu, P.P. Pan, G.Q. Liu, Enhancing refractive index sensing capability with hybrid plasmonic photonic absorbers. J. Mater. Chem. C 3(17), 4222–4226 (2015)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, G. Liu, G. Fu, X. Liu, Y. Wang, Multi-band light perfect absorption by a metal layer coupled dielectric metamaterial. Opt. Express 24, 5020–5025 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, M. Qiu, Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express 19(15), 14726–14734 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    R. Alaee, M. Farhat, C. Rockstuhi, L. Falk, A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20(27), 28017–28024 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M.B. Pu, C.G. Hu, M. Wang, C. Huang, Z.Y. Zhao, C.T. Wang, Q. Feng, X.G. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19(18), 17413–17420 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Y.S. Zhai, G.D. Chen, J. Xu, Z.Y. Qi, X.H. Li, Q.L. Wang, Multiple-band perfect absorbers based on the combination of Fabry–Perot resonance and the gap plasmon resonance. Opt. Commun. 399, 28–33 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    X.Y. Lu, J.T. Lin, Field enhancement of metal grating with nanocavities and its sensing applications. J. Opt. 19(5), 2040 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    L. Zhang, Y. Wang, L. Zhou, F. Chen, Tunable perfect absorber based on gold grating including phase-changing material in visible range. Appl. Phys. A 125, 368 (2019). (In Press) ADSCrossRefGoogle Scholar
  23. 23.
    F. Chen, H.F. Zhang, L.H. Sun, J.J. Li, C.C. Yu, Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser. Technol 116, 293–299 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    S.Y. Chou, P.R. Krauss, P.J. Renstron, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)CrossRefGoogle Scholar
  25. 25.
    K.L. Lee, P.W. Chen, S.H. Wu, J.B. Huang, S.Y. Yang, P.W. Wei, Enhancing surface plasmon detection using template stripped gold nanoslit array on plastic films. ACS Nano 6(4), 2931–2939 (2012)CrossRefGoogle Scholar
  26. 26.
    Z.Q. Liu, G.Q. Liu, G.L. Fu, X.S. Liu, Z.P. Huang, G. Gu, All metal meta-surfaces for narrowband light absorption and high performance sensing. J. Phys. D. Appl. Phys 49(44), 445104 (2016)CrossRefGoogle Scholar
  27. 27.
    Z.Y. Li, S. Butun, K. Aydin, Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8(8), 8242–8248 (2014)CrossRefGoogle Scholar
  28. 28.
    X.Y. Lu, R.G. Wu, T.Y. Zhang, Metal dielectric metal based narrow band absorber for sensing applications. Opt. Express 23(23), 29842–29847 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fang Chen
    • 1
    Email author
  • Huafeng Zhang
    • 1
  • Lihui Sun
    • 1
  • Jijun Li
    • 1
  • Chunchao Yu
    • 1
  1. 1.Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic EngineeringYangtze UniversityJingzhouPeople’s Republic of China

Personalised recommendations