Advertisement

Applied Physics A

, 125:802 | Cite as

Assessment of gamma-rays and fast neutron beam attenuation features of Er2O3-doped B2O3–ZnO–Bi2O3 glasses using XCOM and simulation codes (MCNP5 and Geant4)

  • G. LakshminarayanaEmail author
  • M. G. Dong
  • Ashok Kumar
  • Y. Elmahroug
  • Akshatha Wagh
  • Dong-Eun LeeEmail author
  • Jonghun YoonEmail author
  • Taejoon ParkEmail author
Article
  • 31 Downloads

Abstract

The authors aim to study the gamma-rays and neutron beam shielding capabilities of zinc bismuth borate glasses doped with erbium ions. Mass attenuation coefficient (MAC) (μ/ρ) values were computed employing XCOM and two different simulation codes, MCNP5 and Geant4, within 0.015–15 MeV photon energy, which showed good agreement within the derived values. The effective atomic number (Zeff), electron density (Ne), half-value layer (HVL) and mean free path (MFP) values were derived using MAC values. To account on the scattering effects of photons from the samples, exposure buildup factor (EBF) were determined, applying geometric progression (G-P) method, within 0.015–15 MeV photon energy and penetration depth of 1–40 mfp (intervals: 1, 5, 10, 15, and 40 mfp). The high MAC, Zeff values and low HVL, MFP values of 16.93B2O3‒22.57ZnO‒60Bi2O3‒0.5Er2O3 (mol%) glass optimized its shielding effects against gamma-rays. The macroscopic effective removal cross-section for fast neutron (ΣR) values lie within the range of 0.1142–0.1232 cm−1 for the selected Er2O3-doped samples. The studied parameters of the experimented glasses revealed their dominant radiation shielding features compared to commercial shielding glasses, concretes, and alloys.

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (no. NRF-2018R1A5A1025137).

References

  1. 1.
    P. Kaur, K.J. Singh, M. Kurudirek, S. Thakur, Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties. Spectrochim. Acta A 223, 117309 (2019)CrossRefGoogle Scholar
  2. 2.
    M.I. Sayyed, H.O. Tekin, O. Agard, Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2–Cr2O3 glasses: the role of TeO2. Radiat. Phys. Chem. 163, 58–66 (2019)CrossRefGoogle Scholar
  3. 3.
    W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban, H.A. Farroh, Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30-x) BaO-x ZnO glass system. Appl. Phys. A 125(275), 1–10 (2019)ADSGoogle Scholar
  4. 4.
    C.-M. Lee, Y.H. Lee, K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy 49, 303–312 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3–PbO2–Bi2O3 glasses. Compos. Part B Eng. 172, 218–225 (2019)CrossRefGoogle Scholar
  6. 6.
    H.A. Saudi, S.U. El-Kameesy, Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material. Radiat. Detect. Technol. Methods 2(44), 1–7 (2018)Google Scholar
  7. 7.
    Y. Al-Hadeethi, S.A. Tijani, The use of lead-free transparent 50BaO-(50-x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. J. Alloys Compd. 803, 625–630 (2019)CrossRefGoogle Scholar
  8. 8.
    M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code. Mater. Chem. Phys. 215, 183–202 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018)CrossRefGoogle Scholar
  10. 10.
    G. Lakshminarayana, S.O. Baki, K.M. Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids 471, 222–237 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M. Singh, A. Tondon, B. Singh, B.S. Sandhu, Effect of addition of cerium(III) nitrate hexahydrate on gamma ray interaction properties in acetone at various gamma energies obtained by Compton scattering technique. Chem. Phys. 525, 110377 (2019)CrossRefGoogle Scholar
  12. 12.
    S.A.M. Issa, M.I. Sayyed, A.M.A. Mostafa, G. Lakshminarayana, I.V. Kityk, Investigation of mechanical and radiation shielding features of heavy metal oxide based phosphate glasses for gamma radiation attenuation applications. J. Mater. Sci. Mater. Electron. 30, 12140–12151 (2019)CrossRefGoogle Scholar
  13. 13.
    M. Kim, C.L. Corkhill, N.C. Hyatt, J. Heo, Development, characterization and dissolution behavior of calcium-aluminoborate glass wasteforms to immobilize rare-earth oxides. Sci. Rep. 8(5320), 1–8 (2018)Google Scholar
  14. 14.
    S.C. Colak, I. Akyuz, Atay, F (2016) On the dual role of ZnO in zinc-borate glasses. J. Non-Cryst. Solids 432(Part B), 406–412 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    A.D. Sontakke, K. Biswas, A. Tarafder, R. Sen, K. Annapurna, Broadband Er3+ emission in highly nonlinear bismuth modified zinc-borate glasses. Opt. Mater. Express 1, 344–356 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S.P. Singh, B. Karmakar, Bismuth oxide and bismuth oxide doped glasses for optical and photonic applications, in Bismuth: Characteristics, Production and Applications, Materials Science and Technologies, ed. by K.P. Ghatak, S. Bhattacharya (Nova, Hauppauge, 2012), pp. 229–249Google Scholar
  17. 17.
    R. Wang, X. Meng, F. Yin, Y. Feng, G. Qin, W. Qin, Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications. Opt. Mater. Express 3, 1127–1136 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    X. Liu, H. Duan, Y. Yang, G. Zhao, F. Huang, G. Bai, J. Zhang, Optimization by energy transfer process of 2.7 µm emission in highly Er3+-doped tungsten-tellurite glasses. Infrared Phys. Technol. 99, 49–54 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    J. Janek, R. Lisiecki, W. Ryba-Romanowski, J. Pisarska, W.A. Pisarski, Up-conversion luminescence of Er3+ ions in lead-free germanate glasses under 800 nm and 980 nm cw diode laser excitation. Opt. Mater. 74, 105–108 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen: XCOM: photon cross sections database, NIST standard reference database 8 (XGAM) (2010). https://www.nist.gov/pml/xcom-photon-cross-sections-database. Accessed May 2019
  21. 21.
    X-5 Monte Carlo Team: “MCNP—a general Monte Carlo N-particle Transport Code, Version 5”, volume I: overview and theory, LA-UR-03-1987 (April, 2003). Volume II: user’s guide, LA-CP-03-0245 (April, 2003). Volume III: developer’s guide, LA-CP-03-0284 (April, 2003). https://mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf. Accessed May 2019
  22. 22.
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A. Waly El-S, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016)CrossRefGoogle Scholar
  24. 24.
    S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instrum. Methods Phys. Res. B 266, 3906–3912 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    G. Lakshminarayana, M.I. Sayyed, S.O. Baki, A. Lira, M.G. Dong, KhA Bashar, I.V. Kityk, M.A. Mahdi, Borotellurite glasses for gamma-ray shielding: an exploration of photon attenuation coefficients and structural and thermal properties. J. Electron. Mater. 48, 930–941 (2019)ADSCrossRefGoogle Scholar
  26. 26.
    S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence. Radiat. Phys. Chem. 79, 575–582 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, M.A. Mahdi, Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 139, 33–39 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A.M. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37, 218–222 (2010)CrossRefGoogle Scholar
  29. 29.
    G. Lakshminarayana, A. Kumar, M.G. Dong, M.I. Sayyed, N.V. Long, M.A. Mahdi, Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Non-Cryst. Solids 481, 65–73 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    E. Salama, A. Maher, G.M. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead. J. Phys. Chem. Solids 131, 139–147 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Dong, M.I. Sayyed, G. Lakshminarayana, M.Ç. Ersundu, A.E. Ersundu, P. Nayar, M.A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids 468, 12–16 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)CrossRefGoogle Scholar
  33. 33.
    V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301–310 (2014)CrossRefGoogle Scholar
  34. 34.
    V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys. Chem. 41, 276–283 (2015)CrossRefGoogle Scholar
  35. 35.
    M.I. Sayyed, Investigation of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94, 1133–1137 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    M.Ç. Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, Evaluation of physical, structural properties and shielding parameters for K2O–WO3–TeO2 glasses for gamma ray shielding applications. J. Alloys Compd. 714, 278–286 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Intelligent Construction Automation CenterKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Resource and EnvironmentNortheastern UniversityShenyangChina
  3. 3.Department of PhysicsUniversity CollegeDhuriIndia
  4. 4.Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Physique Nucléaire et des Hautes EnergiesTunisTunisia
  5. 5.Ecole Centrale Polytechnique Privée de Tunis, Univesité CentraleTunisTunisia
  6. 6.School of Architecture and Civil EngineeringKyungpook National UniversityDaeguRepublic of Korea
  7. 7.Department of Mechanical EngineeringHanyang UniversityAnsanRepublic of Korea
  8. 8.Department of Robotics EngineeringHanyang UniversityAnsanRepublic of Korea

Personalised recommendations