Advertisement

Applied Physics A

, 125:824 | Cite as

Influence of Ho–Ni–Mn substitution on the structural and magnetic behavior of Ba–Sr Co2Z-type nanohexaferrites extension up to Mossbauer investigations

  • Kirti Singha
  • Virender Pratap SinghEmail author
  • Monika Chandel
  • Nain Jeet Singh Negi
  • Susheel KaliaEmail author
  • R. K. Kotnala
Article

Abstract

A series of Co2Z-type Ba–Sr nanohexaferrites Ba1.5Sr1.5Co2−zHozMnxNiyFe24−xyO41 (z = 0.0, 0.05, 0.10, 0.15, 0.20, x = y = 0.0, 0.25, 0.5, 0.75, 1.00) have been synthesized using sol–gel auto-combustion synthesis route. The effect of Ho–Ni–Mn substitutions on crystallographic and magnetic properties of synthesized nanohexaferrites was investigated using XRD, VSM, and Mössbauer spectroscopy. Microstructural analysis showed single-phase crystal structures without any impurities and hexagonal with the space group P63/mmc. The average variation in crystallite size ranges from 43 to 60 nm with a slight increase in X-ray density and appreciable decrease in porosity was observed for different dopants. FE-SEM (Nova Nano SEM-450) substantiates the hexagonal structure and HR-TEM images assisted with SAED pattern confirm the crystalline quality and FWHM of the material, which significantly support the XRD results. FTIR spectra showed two characteristic metal stretching peaks in the range of 400–600 cm−1 due to the substitution of Ho–Ni–Mn. Magnetic measurements show maximum magnetic saturation (Ms) at 44.04 emu g−1 and elevated value of coercivity (Hc) 224Oe imparting typical characteristics of soft ferrite with high coercivity. Mössbauer analysis with least squares fit sextets of six distinguishable sites at room temperature for all samples substantially supports the results of VSM. The materials with large coercivity are useful in permanent magnet applications. The prepared composites could be useful for applications in microwave absorbing materials, magnetic storage, and the miniaturization of antennas for wireless communication devices.

Notes

Acknowledgements

One of the authors Ms. Kirti Singha is thankful to Prof. Mahavir Singh and Dr. Arun Kumar, Himachal Pradesh University, Shimla for Mössbauer fitting; Vinod Kumar, Department of Pharmacology and Toxicology, NIPER Mohali for providing HR-TEM facility, and Indian Institute of Technology, Mandi for research and instrumentation facilities.

References

  1. 1.
    J. Smit, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959)Google Scholar
  2. 2.
    A. Sharbati, S. Choopani, A. Ghasemi, Synthesis and magnetic properties of nanocrystalline Ba3Co2(0.8−x)Mn0.4Ni2xFe24O41 prepared by citrate sol-gel method. Dign. J. Nanomater. Biostruct. 6, 187 (2011).Google Scholar
  3. 3.
    T. Wu, H. Su, Q. Ding, H. Zhang, Y. Jing, X. Tang, Aluminum substituted low loss Z-type hexaferrites for antenna applications. Phys. B 429, 85 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    J.P. Mohammad, G. Ali, R.G. Gholam, Characterization and investigation of magnetic and microwave properties of Al–Cr-substituted Z-type barium hexaferrite nanoparticles. J. Superconduct Novel Magn. 6, 795 (2016)Google Scholar
  5. 5.
    Q. Li, S. Yan, X. Wang, Y. Nie, Z. Feng, Su Zhijuan, Y. Chen, V.G. Harris, Dual-ion substitution induced high impedance of Co2Z hexaferrites for ultra-high frequency applications. Acta Mater. 98, 190 (2015)CrossRefGoogle Scholar
  6. 6.
    Kyoung-Seok M, Young-Min K, InTaek H, Sang-Eui L, Grain growth behavior of Ba1.5Sr1.5Co2Fe24O41 flakes in molten salt synthesis and the magnetic properties of flake/polymer composites. J. Appl. Phys. 120, 194102 (2016).Google Scholar
  7. 7.
    R. Tang, C. Jiang, H. Zhou, H. Yang, Effects of composition and temperature on the magnetic properties of (Ba, Sr)3Co2Fe24O41 Z type hexaferrites. J. Alloy Compd. 658, 132 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Bae, Y.K. Hong, J.J. Lee, J. Jalli, G.S. Abo, A. Lyle, I.T. Nam, W.M. Seong, J.S. Kum, S.H. Park, New synthetic route of Z-type (Ba3Co2Fe24O41) hexaferrite particles. IEEE Trans. Magn. 45, 2557 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Sharma, K.S. Daya, S. Sharma, K.M. Batoo, M. Singh, Sol-gel auto combustion processed soft Z-type hexa nanoferrites for microwave antenna miniaturization. Ceram. Int. 41, 7109 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Junliang, Z. Yanwei, G. Cuijing, Z. Wei, Y. Xiaowei, One-step synthesis of barium hexaferrite nanocrystals via microwave-assisted sol-gel auto-combustion. J. Eur. Ceram. Soc. 30, 993 (2010)CrossRefGoogle Scholar
  11. 11.
    S.R. Gawali, K.G. Rewatkar, V.M. Nanoti, Structural and electrical properties of M-type nanocrystalline aluminium substituted calcium hexaferrites. Adv. Appl. Sci. Res. 3, 2672 (2012)Google Scholar
  12. 12.
    R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloy Compd. 478, 599 (2009)CrossRefGoogle Scholar
  13. 13.
    D.R. Mane, D.D. Birajdar, S.E. Shirsath, R.A. Telugu, R.H. Kadam, Structural and magnetic characterizations of Mn–Ni–Zn ferrite nanoparticles. Phys. Status Solid A 207, 2355 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J. Xu, G. Ji, H. Zou, Y. Zhou, S. Gan, Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites. J. Alloy Compd. 509, 4290 (2011)CrossRefGoogle Scholar
  15. 15.
    J.T. Lim, T. Kouh, C.S. Kim, Investigation of magnetic properties of Sr doped Ba3-xSrxCo2Fe24O41 Z-type Hexaferrite by Mössbauer spectroscopy. IEEE Trans. Magn. 51, Art no. 1800604 (2015).Google Scholar
  16. 16.
    Y. Liu, M.G. Drew, Y. Liu, J. Wang, Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x=0.0–2.0. J. Magn. Magn. Mater. 322, 814 (2010).Google Scholar
  17. 17.
    S.A. Mazen, A.M. Abdel-Daiem, IR spectra and dielectric properties of Cu–Ge ferrite. Mater. Chem. Phys. 130, 847 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route. Mater. Res. Bull. 63, 58 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, R.S. Meena, R. Chatterjee, Microwave absorption studies of Cr-doped Co–U type hexaferrites over 2–18 GHz frequency range. J. Magn. Magn. Mater. 418, 194 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    J.T. Lim, C.S. Kim, Investigation of site preference of Zn doped Ba3Co2−x Znx Fe24O41 by Mossbauer spectroscopy. J. Appl. Phys. 115, 17D706 (2014)CrossRefGoogle Scholar
  21. 21.
    S.B.S. Magham, M. Sharma, S.R. Shannigrahi, H.R. Tan, V. Sharma, Y.S. Meng, S. Idapalpati, R.V. Ramanujan, D.V.M. Repaka, Development of Z-type hexaferrites for high frequency EMI shielding applications. J. Magn. Magn. Mater. 441, 303 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    C. Sudakar, G.N. Subbana, T.R.N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263, 253 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    R. Jasrotia, V.P. Singh, R. Kumar, K. Singha, M. Chandel, M. Singh, Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and Mössbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Results Phys. 12, 1933 (2019).ADSCrossRefGoogle Scholar
  24. 24.
    J.T. Lim, In-Bo Shim, E.J. Hahn, C.S. Kim, The crystalline and magnetic properties of Zn doped strontium Z-type hexaferrite synthesized by polymerizable complex method. AIP Adv. 7, 056108 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Hodges, S. Short, J.D. Jorgensen, X. Xiong, B. Dabrovski, S.M. Mini, C.W. Kimball, Evolution of oxygen-vacancy ordered crystal structures in the Perovskite series SrnFenO3n-1(n = 2, 4, 8, and ∞), and the relationship to electronic and magnetic properties. J Solid State Chem 151, 190 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kirti Singha
    • 1
  • Virender Pratap Singh
    • 1
    • 2
    Email author
  • Monika Chandel
    • 1
  • Nain Jeet Singh Negi
    • 3
  • Susheel Kalia
    • 4
    Email author
  • R. K. Kotnala
    • 5
  1. 1.School of PhysicsShoolini UniversityBajholIndia
  2. 2.Government Degree CollegeNadaun, HamirpurIndia
  3. 3.Department of PhysicsHimachal Pradesh UniversityShimlaIndia
  4. 4.Department of ChemistryACC Wing, Indian Military AcademyDehradunIndia
  5. 5.CSIR-National Physical LaboratoryPusaIndia

Personalised recommendations