Applied Physics A

, 125:784 | Cite as

Influence of porous configuration on dielectric and piezoelectric properties of KNN–BKT lead-free ceramic

  • Evelyn Derina Pinheiro
  • Thenmuhil DeivarajanEmail author


Porous piezoelectric ceramics are the far and wide known graded functional materials. Of late, lead-free porous piezoelectric systems have increased enormous consideration, because of the factors inclusive of environmental friendly, light weight, low acoustic impedance and versatility. Porous lead-free (1-x) (K, Na) NbO3. x (Bi, K) TiO3 (KNN–BKT) solid solution, was synthesized by solid state method. The porogen utilized as part of this work was ammonium oxalate monohydrate in 10, 20, 30 and 40 wt% to get diverse porosity levels in the lead-free specimen. Primary evaluation of the porous specimen has been done with respect to its phase by XRD and surface microstructure using SEM. The specimens were poled and their piezoelectric coefficients were assessed at varied temperatures. Dielectric properties as a function of temperature and frequency are also reported for the specimens.



We like to acknowledge Anna University Chennai, IITM chennai for their technical and characterization facilities throughout this research work.


  1. 1.
    S. Geis, P. Lobmann, S. Seifert, J. Fricke, Ferroelectr 241, 75 (2000)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    A.J. Dantziger, Multicomponent systems of ferroelectric solid solutions: physics, crystallochemistry, technology, design aspects of piezoelectric materials. (Rostov on Don, Russia: Rostov State University Press, 2001) Vol. 1–2Google Scholar
  4. 4.
    A.A. Rybyanets, IEEE Trans. UFFC 58, 1757 (2011)CrossRefGoogle Scholar
  5. 5.
    A.N. Rybyanets, Ferroelectr 419, 90 (2011)CrossRefGoogle Scholar
  6. 6.
    Sidney B. Lang, Erling Ringgaard, Appl. Phys. A 107, 631 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    F. Zhang, L. Han, S. Bai, T. Sun, T. Karaki, M. Adachi, Jpn. J. Appl. Phys. 47, 7685 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    P. Zhao, B.P. Zhang, R. Tu, T. Goto, J. Am. Ceram. Soc. 91, 3078 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Kumada, T. Kyoda, Y. Yonesaki, T. Takei, N. Kimura, Mater. Res. Bull. 42, 1856 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Saito, H. Takao, I. Tani, T. Nonoyama, K. Takatori, Nature 432, 84 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press, New York, 1971), pp. 115–181Google Scholar
  12. 12.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Malic, J. Bernard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28, 1191 (2008)CrossRefGoogle Scholar
  14. 14.
    L.B. Kong, T. Li, H.H. Hng, F. Boey, T. Zhang, S. Li, Waste Energy Harvesting (Springer, Berlin, 2014), pp. 19–113CrossRefGoogle Scholar
  15. 15.
    Andrey N. Rybyanets, Ferroelectrics 419, 90 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  17. 17.
    T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel, T. Morita, Mater. Lett. 64, 125 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Hishinuma, Bull. Mater. Sci. 18, 811 (1995)CrossRefGoogle Scholar
  19. 19.
    H. Du, W. Zhou, D. Zhu, L. Fa, S. Qu, Y. Li, Z. Pei, J. Amer. Ceram. Soc 91, 2903 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M. Wu, L. Fang, L. Liu, X. Zhou, Y. Huang, Y. Li, Mater. Chem. Phys. 132, 1015 (2012)CrossRefGoogle Scholar
  22. 22.
    C.F. Buhrer, J. Chem. Phys 36, 798 (1962)ADSCrossRefGoogle Scholar
  23. 23.
    T. Wada, A. Fukui, Y. Matsuo, Jpn. J. Appl. Phys. 41, 7025 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Haiying Xing, Panfeng Huang, Chunhua Zhang, Dan Li, Yi Zhang, Wenpeng Guo, Gaolei Zhao, Qingwei Liao, Mater. Lett. 160, 38 (2015)CrossRefGoogle Scholar
  25. 25.
    A.B. Kounga, S.T. Zhang, W. Jo, T. Granzow, J. Rodel, Appl. Phys. Lett. 92, 222902 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Phys. D Appl. Phys. 41, 115413 (2008)CrossRefGoogle Scholar
  27. 27.
    F.F. Lange, L. Atteraas, F. Zok, J.R. Porter, Acta. Metal. Mater. 39, 209 (1991)CrossRefGoogle Scholar
  28. 28.
    R. López, F. González, M.P. Cruz, M.E. Villafuerte-Castrejon, Mater. Res. Bull. 46, 70 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Wang, B.P. Zhang, J.F. Li, L.M. Zhang, J. Electroceram. 21, 251 (2007)CrossRefGoogle Scholar
  30. 30.
    Y. Liao, D. Wang, H. Wang, T. Wang, Q. Zheng, J. Yang, K.W. Kwok, D. Lin, Ceram Int. 45(10), 13179–13186 (2019)CrossRefGoogle Scholar
  31. 31.
    A. Sabin, Problems in particle size: laser diffraction observations, J. GXP Compliance 15, 4 (2011)
  32. 32.
    P.V. Ivanov, V.V. Eremkin, V.G. Smotrakov, E.S. Tsikhotskii, Inorg. Mater. 38, 408 (2002)CrossRefGoogle Scholar
  33. 33.
    R. Sumang, T. Bongkarn, J. Mater. Sci. 46, 6823 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    R. Sumang, T. Bongkarn, Ferroelectrics 383, 57 (2009)CrossRefGoogle Scholar
  35. 35.
    B. Praveen kumar, H.H. Kumar, D.K. Kharat, Bull. Mater 28, 453 (2005)CrossRefGoogle Scholar
  36. 36.
    R.K. Gupta, T.A. Venkatesh, Acta Mater. 54, 4063 (2006)CrossRefGoogle Scholar
  37. 37.
    Amrita Singh, Ratnamala Chatterjee, AIP Adv. 3, 032129 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Amir Khesro, Ph.D Thesis, Department of Material Science and Engineering University of Sheffield (2016).
  39. 39.
    Franziska Eichhorn, Jonas Biggemann, Simone Kellermann, Akinobu Kawai, Kensuke Kato, Kenichi Kakimoto, Tobias Fey, Adv. Eng. Mater. 00, 1700420 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Dean, Lange’s Chemistry Handbook (McGraw-Hill Professional, New York, 2004), p. 256Google Scholar
  41. 41.
    Guoliang Xue, Wu Qiankun, Gang Li, Huaizhou Lin, Gang Liu, Yi Chen, Xiaokui Liu, Yan Yan, J. Adv. dielectr. 7, 1750028 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Vikram S Yadav, Devendra K Sahu, Yashpal Singh, D.C.Dhubkarya, in Proceedings of IMECS, Vol 3, 2010Google Scholar
  43. 43.
    A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, J. Alloys compd. 464, 361 (2008)CrossRefGoogle Scholar
  44. 44.
    T. Prodromakis, C. Papavassiliou, Appl. Surf. Sci. 255, 6989 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ceramic Technology, Alagappa College of TechnologyAnna UniversityChennaiIndia

Personalised recommendations