Advertisement

Applied Physics A

, 125:806 | Cite as

Post-deposition annealing effect on the structural, morphological, and photoluminescence properties of β-Ga2O3 nanowires deposited on silicon by glancing angle deposition

  • Shagolsem Romeo Meitei
  • Naorem Khelchand SinghEmail author
Article
  • 16 Downloads

Abstract

β-Ga2O3 nanowire (NW) was fabricated on a Si-substrate using glancing angle deposition (GLAD) technique. To study the structural, morphological, and optical properties of the as-deposited β-Ga2O3 NW, thermal annealing was done at different temperatures ranging from 600 to 1000 °C and the corresponding results were analyzed. XRD analysis shows an increase in crystallinity of the as-deposited sample upon annealing. The average crystallite size was found to be increased from 13.72 to 20.19 nm after annealing at 900 °C. Annealed β-Ga2O3 NW contains more concentration of oxygen due to absorption of O2 molecules. The lattice strain and dislocation density of the as-deposited β-Ga2O3 NW were found to reduce significantly after thermal annealing. The FEG-SEM image confirms the growth of vertically aligned β-Ga2O3 NW. An enhancement in the UV region was observed in the photoluminescence spectra after annealing at 900 °C.

Highlights

  • β-Ga2O3 nanowires were synthesized using GLAD.

  • The as deposited samples were annealed from 600 to 1000 °C.

  • Annealing β-Ga2O3 nanowires causes reduction in oxygen vacancy.

  • Increase in crystallinity with increasing annealing temperature.

  • Decrease in lattice strain and dislocation density with increase in annealing temperature.

  • Increase in photoluminescence property with annealing temperature of 900 °C.

Notes

Acknowledgements

The authors acknowledge SAIF, IIT Bombay for FEG-SEM analysis, Dr. Thiyam David Singh, Dept. of Chemistry NIT Manipur for providing PL measurement, Science and Humanity department NIT Nagaland for providing XRD measurement, and NIT Nagaland for financial support.

References

  1. 1.
    X. Xiang, C.B. Cao, H.S. Zhu, J. Cryst. Growth 279(1–2), 122–128 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    H.H. Tippins, Phys. Rev. 140(1A), A316 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, W. Zhang, Small 10(9), 1848–1856 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Roy, V.G. Hill, E.F. Osborn, J. Am. Chem. Soc. 74(3), 719–722 (1952)CrossRefGoogle Scholar
  5. 5.
    L. Binet, D. Gourier, J. Phys. Chem. Solids 59(8), 1241–1249 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    T. Miyata, T. Nakatani, T. Minami, J. Lumin. 87, 1183–1185 (2000)CrossRefGoogle Scholar
  7. 7.
    C.T. Lee, J.T. Yan, Sens. Actuators B Chem. 147(2), 723–729 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, J. Yan, Q. Li, C. Qu, L. Zhang, T. Li, Phys. B Condens. Condens. Matter 406(15–16), 3079–3082 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M.F.A. Kuhaili, S.M.A. Durrani, E.E. Khawaja, Appl. Phys. Lett. 83(22), 4533–4535 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    I. Donmez, C.O. Akgun, N. Biyikli, J. Vac. Sci. Technol. A Vac. Surf. Films 31(1), 01A110 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Appl. Phys. Lett. 90(3), 031912 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhao, D. Ye, G.C. Wang, T.M. Lu, in Nanotubes and Nanowires, vol. 5219. (International Society for Optics and Photonics, 2003), pp. 59–73Google Scholar
  13. 13.
    H. Altuntas, I. Donmez, C.O. Akgun, N. Biyikli, J. Vac. Sci. Technol. A Vac. Surf. Films 32(4), 041504 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    G. Sinha, K. Adhikary, S. Chaudhuri, Opt. Mater. 29(6), 718–722 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    H.G. Jiang, M. Ruhle, E.J. Lavernia, J. Mater. Res. 14(2), 549–559 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    S.K. Pandey, S.K. Pandey, V. Awasthi, A. Kumar, V.P. Deshpande, M. Gupta, S. Mukherjee, Bull. Mater. Sci. 37(5), 983–989 (2014)CrossRefGoogle Scholar
  17. 17.
    F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Mater. Chem. Phys. 147(3), 987–995 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Zhou, Z. Li, J. Ni, Z. Zhang, Mater. Trans. 52(3), 469–473 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Harwig, F. Kellendonk, J. Solid State Chem. 24(3–4), 255–263 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    C.H. Liang, G.W. Meng, Y.W. Wang, L.D. Zhang, Appl. Phys. Lett. 78(21), 3202–3204 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    H.W. Kim, N.H. Kim, C. Lee, J. Mater. Sci. Mater. Electron. 16(2), 103–105 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shagolsem Romeo Meitei
    • 1
  • Naorem Khelchand Singh
    • 1
    Email author
  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology NagalandDimapurIndia

Personalised recommendations