Advertisement

Applied Physics A

, 125:764 | Cite as

Study of effect of Gd substitution at the Fe site on structural, dielectric and electrical characteristics of BiFeO3

  • L. Thansanga
  • Alok ShuklaEmail author
  • Nitin Kumar
  • R. N. P. Choudhary
Article
  • 72 Downloads

Abstract

In this communication, the effect of gadolinium (Gd) substitution on structural, microstructural, electrical and dielectric properties of bismuth ferrite BiFeO3 (i.e. Bi(Fe0.95Gd0.05)O3 abbreviated as BFGO5) has been reported. The development of an environment-friendly lead-free multiferroic material by substituting a rare earth element at the uncommon site of BiFeO3 (BFO) (i.e. Gd at the Fe site rather than commonly preferred Bi site) for the tailoring of its multiferroic properties has been attempted in this study. The present studied material has been fabricated through a conventional standard solid-state reaction (SSR) method using carbonates and high-quality oxides in a stoichiometric amount. The phase formation and basic crystal data were analysed by X-ray diffraction technique which shows a single-phase formation of BFGO5 material in orthorhombic symmetry. The average crystallite size was calculated using Scherrer’s formula and found to be 84 nm. The surface morphology and compositions examined by FE-SEM, EDX, FT-IR and TEM show the formation of highly compact sample with uniform distribution of grains. Detailed studies of dielectric parameters (dielectric constant and tangent loss) in a selected frequency range (1–1000 kHz) at different temperatures (273–773 K) clearly exhibit enhancement on dielectric properties of BFO. Studies of its impedance spectroscopy, electrical modulus and electrical conductivity confirm the semiconductor behaviour [negative temperature coefficient of resistance (NTCR)] and non-Debye type relaxation process of the material. The polarization versus electric field (P–E) analysis of BFGO5 shows an improvement in remnant polarization as compared to the parent compound BFO. Therefore, based on the several investigations of results, the BFGO5 material could be considered as a favourable candidate for electronic device applications.

Notes

Acknowledgements

The authors are grateful to National Physical Laboratory, New Delhi, for providing some TEM characterization facility. Author Alok Shukla gratefully acknowledges the financial support received from SERB-DST, Government of India, New Delhi, in the form of Research Project no. EMR/2015/002420.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)ADSGoogle Scholar
  2. 2.
    W. Prellier, M. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17, R803 (2005)ADSGoogle Scholar
  3. 3.
    N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 45, 822–831 (2019)Google Scholar
  4. 4.
    N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3. J Alloy Compd. 688, 858–869 (2016)Google Scholar
  5. 5.
    N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38 (2010)Google Scholar
  6. 6.
    E.A.V. Ferri, I.A. Santos, E. Radovanovic, R. Bonzanini, E.M. Girotto, Chemical characterization of BiFeO3 obtained by Pechini method. J. Braz. Chem. Soc. 19, 1153–1157 (2008)Google Scholar
  7. 7.
    S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, D.K. Mishra, D.R. Sahu, A.K. Pradhan, V.V. Srinivasu, B.B. Nayak, S. Verma, B.K. Roul, Defect driven multiferroicity in Gd doped BiFeO3 at room temperature. J. Magn. Magn. Mater. 322, 3614–3622 (2010)ADSGoogle Scholar
  8. 8.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Louts, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)ADSGoogle Scholar
  9. 9.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)ADSGoogle Scholar
  10. 10.
    J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)ADSGoogle Scholar
  11. 11.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural electrical and magnetic properties of (Cd, Ti) modified BiFeO3. Phys. Lett. A 381, 2721–2730 (2017)ADSGoogle Scholar
  12. 12.
    A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural and electrical characteristics of (Co, Ti) modified BiFeO3. J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)Google Scholar
  13. 13.
    A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3. J. Appl. Phys. 112, 014321–014328 (2012)ADSGoogle Scholar
  14. 14.
    V.V. Lazenka, A.F. Ravinski, I.I. Makoed, J. Vanacken, G. Zhang, V.V. Moshchalkov, Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films. J. Appl. Phys. 111, 123916 (2012)ADSGoogle Scholar
  15. 15.
    H. Uchida, R. Ueno, H. Funakubo, S. Koda, Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J. Appl. Phys. 100, 014106 (2006)ADSGoogle Scholar
  16. 16.
    Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. J. Appl. Phys. 104, 116109 (2008)ADSGoogle Scholar
  17. 17.
    A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloy Comp. 598, 142–150 (2014)Google Scholar
  18. 18.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20(6), 3970–3974 (2014)Google Scholar
  19. 19.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27, 4800–4809 (2016)Google Scholar
  20. 20.
    D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)Google Scholar
  21. 21.
    A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of FeSe2 nanoparticles and FeSe2/FeO(OH) nanocomposites by hydrothermal method. J. Alloy Compd. 625, 26–33 (2015)Google Scholar
  22. 22.
    G.S. Lotey, N.K. Verma, Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J. Nanopart. Res. 14, 742 (2012)ADSGoogle Scholar
  23. 23.
    F. Chang, S. Guilin, F. Kun, Q. Ping, Z. Qijun, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earth 24, 273–276 (2006)Google Scholar
  24. 24.
    D.V. Vassallo, M.R. Simões, L.B. Furieri, M. Fioresi, J. Fiorim, E.A.S. Almeida, J.K. Angeli, G.A. Wiggers, F.M. Peçanha, M. Salaices, Toxic effects of mercury, lead and gadolinium on vascular reactivity. Braz. J. Med. Biol. Res. 44, 939–946 (2011)Google Scholar
  25. 25.
    T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731–1737 (2003)Google Scholar
  26. 26.
    W. Zhou, H. Deng, H. Cao, J. He, J. Liu, P. Yang, J. Chu, Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by a sol–gel technique. Mater. Lett. 144, 93–96 (2015)Google Scholar
  27. 27.
    R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J Phys. Chem. C 114, 21390–21396 (2010)Google Scholar
  28. 28.
    D. Kuang, P. Tang, X. Wu, S. Yang, X. Ding, Y. Zhang, Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films. J. Alloy. Compd. 671, 192–199 (2016)Google Scholar
  29. 29.
    S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 152, 525–529 (2012)ADSGoogle Scholar
  30. 30.
    S. Irfan, S. Rizwan, Y. Shen, L. Li, S. Butt, C.W. Nan, The gadolinium (Gd3+) and tin (Sn4+) co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci. Rep. 7, 42493 (2017)ADSGoogle Scholar
  31. 31.
    M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles. Ultrason. Sonochem. 19, 1079–1086 (2012)Google Scholar
  32. 32.
    S. Moshtaghia, D. Ghanbarib, M. Salavati-Niasari, Characterization of CaSn(OH)6 and CaSnO3 nanostructures synthesized by a new precursor. J. Nanostruct. 5, 169–174 (2015)Google Scholar
  33. 33.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Facile fabrication of Dy2Sn2O7–SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J. Colloid Interface Sci. 497, 298–308 (2017)ADSGoogle Scholar
  34. 34.
    B. Park, An interactive powder diffraction data interpretations and indexing program version 2.1 (E. WU School of Physical Sciences, Flinders University of South Australia, Bedford Park, 1989), p. 5042Google Scholar
  35. 35.
    N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci. Mater. Electron. 30, 1919–1926 (2019)Google Scholar
  36. 36.
    N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3. Ceram. Int. 44, 21330–21337 (2018)Google Scholar
  37. 37.
    A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural, dielectric and magnetic characteristics of Bi(Ni0.25Ti0.25Fe0.50)O3 ceramics. J. Mater. Sci. Mater. Electron. 27, 1209–1216 (2016)Google Scholar
  38. 38.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic, Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution. J Alloy. Compd. 747, 895–904 (2018)Google Scholar
  39. 39.
    A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1−xLaxFeO3 system studied using 57Fe NMR. Phys. Solid State 45(1), 141–145 (2003)ADSGoogle Scholar
  40. 40.
    I.O. Troyanchuk, A.N. Chobot, O.S. Mantytskaya, N.V. Tereshko, Magnetic properties of Bi(Fe1−xMx)O3 (M = Mn, Ti). Inorg. Mater. 46, 424–428 (2010)Google Scholar
  41. 41.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)Google Scholar
  42. 42.
    J.R. Macdonald, W.B. Johnson, Impedance spectroscopy theory, experiments and applications (Wiley, Hoboken, 2005)Google Scholar
  43. 43.
    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)ADSGoogle Scholar
  44. 44.
    S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)ADSGoogle Scholar
  45. 45.
    N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633 (1996)Google Scholar
  46. 46.
    A. Sinha, A. Dutta, Microstructure evolution, dielectric relaxation and scaling behaviour of Dy for-Fe substituted Ni-nanoferrites. RSC Adv. 5, 100330–100338 (2015)Google Scholar
  47. 47.
    G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behaviour of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)ADSGoogle Scholar
  48. 48.
    N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ion. 179, 689 (2008)Google Scholar
  49. 49.
    A.K. Jonscher, Universal relaxation law (Chelsea Dielectrics Press, London, 1996)Google Scholar
  50. 50.
    B. Dhanalakshmi, P. Kollu, B. Chandra Sekhar, B. Parvatheeswara Rao, P.S.V. Subba Rao, Enhanced magnetic and magneto-electric properties of Mn doped multiferroic ceramics. Ceram. Int. 43, 9272–9275 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. Thansanga
    • 1
  • Alok Shukla
    • 1
    Email author
  • Nitin Kumar
    • 1
  • R. N. P. Choudhary
    • 2
  1. 1.Department of PhysicsNational Institute of Technology MizoramAizawlIndia
  2. 2.Multifunctional Materials Research Laboratory, Department of PhysicsSiksha O Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations