Advertisement

Applied Physics A

, 125:763 | Cite as

Hydrothermal synthesis of Zn2+ doped In2.77S4 nanosheets as a visible-light photocatalyst for tetracycline degradation

  • Hui Li
  • Xiang-Feng WuEmail author
  • Chen-Yu Zhang
  • Jun-Zhang Su
  • Hui WangEmail author
  • Zhi-Feng Liu
  • Yi-Mai Shi
  • Yu-Qian Zuo
  • Zhao-Dong Wang
  • Yu-Xin Zhang
Article
  • 35 Downloads

Abstract

The Zn2+ doped In2.77S4 (Zn–In2.77S4) photocatalyst has been synthesized via a one-step hydrothermal method. The tetracycline was adopted to measure the photocatalytic performance of the as-fabricated Zn–In2.77S4 composites. The probable photocatalytic degradation mechanism of the as-prepared composites was also discussed. Experimental results reveal that doping Zn2+ into In2.77S4 can broaden the light absorption range and improve the recycle ability as well as the separation efficiency of photo-generated electron–hole pairs of pure In2.77S4. Moreover, as the doping amount of Zn2+ increased the photocatalytic efficiency of the as-obtained Zn–In2.77S4 composites appears the tendency of firstly increasing and then decreasing. When the molar ratio of Zn2+ to In3+ is 0.04:1 (4%), in 15 min, the photocatalytic efficiency of the as-developed Zn–In2.77S4 photocatalyst reaches to the maximum of 90.0%. It is higher than 31.8% of pure In2.77S4. Furthermore, superoxide radicals and holes play major roles in the process of photodegradation tetracycline. This research can supply a promising guide to solve antibiotics pollution in water under sunlight.

Notes

Acknowledgements

This work was funded by the Natural Science Foundation of Hebei Province, China (Nos. E2019210251 and B2019210331).

References

  1. 1.
    D.M. Chen, J.J. Yang, Y. Zhu, Y.M. Zhang, Y.F. Zhu, Appl. Catal. B Environ. 233, 202 (2018)CrossRefGoogle Scholar
  2. 2.
    Z.J. Xie, Y.P. Feng, F.L. Wang, D.N. Chen, Q.X. Zhang, Y.Q. Zeng, W.Y. Lv, G.G. Liu, Appl. Catal. B Environ. 229, 96 (2018)CrossRefGoogle Scholar
  3. 3.
    X.F. Wu, Y.J. Wang, L.J. Song, J.Z. Su, J.R. Zhang, Y.N. Jia, J.L. Shang, X.W. Nian, C.Y. Zhang, X.G. Sun, J. Mater. Sci. Mater. Electron. 30, 14987 (2019)CrossRefGoogle Scholar
  4. 4.
    S. Liu, M.Y. Zhao, Z.T. He, Y. Zhong, H. Ding, D.M. Chen, Chin. J. Catal. 40, 446 (2019)CrossRefGoogle Scholar
  5. 5.
    L. Tian, H.L. Jiang, P.H. Chen, Q. Wang, P.P. Niu, Y.M. Shi, M.H. Zhou, Y.C. Qing, X.B. Luo, Chem. Eng. J. 343, 607 (2018)CrossRefGoogle Scholar
  6. 6.
    X.F. Wu, Y. Sun, H. Li, Y.J. Wang, C.X. Zhang, J.R. Zhang, J.Z. Su, Y.W. Wang, Y. Zhang, C. Wang, M. Zhang, J. Alloy. Compd. 740, 1197 (2018)CrossRefGoogle Scholar
  7. 7.
    B.R. Xu, Y.D. Li, Y.Q. Gao, S. Liu, D. Lv, S.J. Zhao, H. Gao, G.Q. Yang, N. Li, L. Ge, Appl. Catal. B Environ. 246, 140 (2019)CrossRefGoogle Scholar
  8. 8.
    N.Y. Cheng, J.Q. Tian, Q. Liu, C.J. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, ACS Appl. Mater. Interfaces 5, 6815 (2013)CrossRefGoogle Scholar
  9. 9.
    W.B. Lu, X.Y. Qin, H.Y. Li, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, Part. Part. Syst. Charact. 30, 67 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.P. Liu, Y.H. Li, F. Peng, Y. Lin, S.Y. Yang, S.S. Zhang, H.J. Wang, Y.H. Cao, H. Yu, Appl. Catal. B Environ. 241, 236 (2019)CrossRefGoogle Scholar
  11. 11.
    Y. Yang, X.A. Yang, D. Leng, S.B. Wang, W.B. Zhang, Chem. Eng. J. 335, 491 (2018)CrossRefGoogle Scholar
  12. 12.
    L.Q. Yang, J.F. Huang, L. Shi, L.Y. Cao, H.M. Liu, Y.Y. Liu, Y.X. Li, H. Song, Y.N. Jie, J.H. Ye, Appl. Catal. B Environ. 221, 670 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.Y. Lan, Z.F. Liu, Z.G. Guo, X.F. Li, L. Zhao, M. Zhang, Dalton Trans. 47, 12181 (2018)CrossRefGoogle Scholar
  14. 14.
    C.H. Ma, Z.F. Liu, Q.J. Cai, C.C. Han, Z.F. Tong, Inorg. Chem. Front. 5, 2571 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Liu, J.Q. Tian, L. Wang, Y.L. Luo, X.P. Sun, Catal. Sci. Technol. 2, 339 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Chen, Z.F. Liu, Chemsuschem 11, 3438 (2018)CrossRefGoogle Scholar
  17. 17.
    X.F. Wu, H. Li, Y. Sun, Y.J. Wang, C.X. Zhang, X.D. Gong, Y.D. Wang, Y. Liu, X.Y. Yang, Appl. Phys. A Mater. (2017).  https://doi.org/10.1007/s00339-017-1016-0 CrossRefGoogle Scholar
  18. 18.
    X.F. Wu, H. Li, J.Z. Su, J.R. Zhang, Y.M. Feng, Y.N. Jia, L.S. Sun, W.G. Zhang, M. Zhang, C.Y. Zhang, Appl. Surf. Sci. 473, 992 (2019)CrossRefADSGoogle Scholar
  19. 19.
    X.F. Wu, H. Li, L.S. Sun, J.Z. Su, J.R. Zhang, W.G. Zhang, M. Zhang, G.W. Sun, L. Zhan, M. Zhang, Appl. Phys. A Mater. (2018).  https://doi.org/10.1007/s00339-018-2012-8 CrossRefGoogle Scholar
  20. 20.
    X.F. Wu, H. Li, J.Z. Su, J.R. Zhang, Y.M. Feng, J.C. Pan, Y. Zhang, L.S. Sun, W.G. Zhang, G.W. Sun, J. Nanopart. Res. 20, 155 (2018)CrossRefADSGoogle Scholar
  21. 21.
    Z.F. Liu, Q.G. Song, M. Zhou, Z.G. Guo, J.H. Kang, H.Y. Yan, Chem. Eng. J. 374, 554 (2019)CrossRefGoogle Scholar
  22. 22.
    Y.T. Li, Z.F. Liu, J. Zhang, Z.G. Guo, Y. Xin, L. Zhao, J. Alloy. Compd. 790, 493 (2019)CrossRefGoogle Scholar
  23. 23.
    H.D. She, Y.D. Sun, S.P. Li, J.W. Huang, L. Wang, G.Q. Zhu, Q.Z. Wang, Appl. Catal. B Environ. 245, 439 (2019)CrossRefGoogle Scholar
  24. 24.
    N.C. Zheng, T. Ouyang, Y.B. Chen, Z. Wang, D.Y. Chen, Z.Q. Liu, Catal. Sci. Technol. 9, 1357 (2019)CrossRefGoogle Scholar
  25. 25.
    T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Angew. Chem. Int. Ed. 58, 4923 (2019)CrossRefGoogle Scholar
  26. 26.
    Z.Y. Wang, W. Guan, Y.J. Sun, F. Dong, Y. Zhou, W.K. Ho, Nanoscale 7, 2471 (2015)CrossRefADSGoogle Scholar
  27. 27.
    P.F. Wang, Z.R. Shen, Y.G. Xia, H.T. Wang, L.R. Zheng, W. Xi, S.H. Zhan, Adv. Funct. Mater. (2019).  https://doi.org/10.1002/adfm.201807013 CrossRefGoogle Scholar
  28. 28.
    J.L. Zhang, Z. Ma, RSC Adv. 7, 2163 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Wang, P.X. Jin, S.H. Duan, J.W. Huang, H.D. She, Q.Z. Wang, T.C. An, Environ. Sci Nano (2019).  https://doi.org/10.1039/C9EN00460B CrossRefGoogle Scholar
  30. 30.
    H.L. Jiang, M.L. Li, J. Liu, X.Q. Li, L. Tian, P.H. Chen, Ceram. Int. 44, 2709 (2018)CrossRefGoogle Scholar
  31. 31.
    C.Z. Zhu, Y.T. Wang, Z.F. Jiang, A.N. Liu, Y. Pu, Q.M. Xian, W.X. Zou, C. Sun, ACS Appl. Mater. Interfaces 11, 13011 (2019)CrossRefGoogle Scholar
  32. 32.
    W. Zhang, L. Zhou, J. Shi, H.P. Deng, J. Colloid Interface Sci. 496, 167 (2017)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering MaterialsShijiazhuang Tiedao UniversityShijiazhuangChina
  2. 2.Tianjin Key Laboratory of Building Green Functional MaterialsTianjin Chengjian UniversityTianjinChina

Personalised recommendations