Applied Physics A

, 125:745 | Cite as

Unusual electrical behaviour in sol–gel-synthesised PKMO nano-sized manganite

  • K. P. LimEmail author
  • S. W. Ng
  • L. N. Lau
  • M. M. Awang Kechik
  • S. K. Chen
  • S. A. Halim


Mixed-valence manganites have gained tremendous attention in the scientific research for its colossal magnetoresistance phenomenon. Nevertheless, the study devoted to praseodymium-based manganites is still limited to date. The present work aims to investigate the grain size effect on sol–gel grown nano-sized Pr0.85K0.15MnO3 (PKMO). The grain size has been modified by heat treatment ranging from 600 °C to 1000 °C. PKMO samples have been studied in detail to elucidate the correlation of spin, charge, orbital and lattice degrees of freedom. The X-ray diffraction analysis revealed that all samples exhibit in single orthorhombic phase with the space group of Pnma (62). The obtained crystallite size and average grain size are in the range of 45–115 nm and 51–210 nm, respectively. The evolution of grains intensively affects the electrical and magneto-transport properties of PKMO. The temperature dependence of the resistivity has been fitted with theoretical expressions in different temperature regimes to investigate their conduction mechanisms. The resistivity exhibits an unusual trend when the grain size increases where a similar pattern also been observed in metal–insulator transition temperature (TMI). This behaviour can be ascribed to the grain size distribution, grain formation and also the occurrence of oxygen vacancies at the grain boundaries. Enhancement of high field magnetoresistance has been discovered below 180 K, whereas low field magnetoresistance is suppressed as the temperature increases and almost vanished at 300 K. The PKMO study demonstrated here is clearly dominated by extrinsic properties (grain evolution) from the evidence of electrical and magneto-transport measurements.



This research is funded and supported by Universiti Putra Malaysia (UPM) research grants, GP/2017/9567400 and GP-IPS/2018/9663900. The authors would like to thank the supported staffs who helped in characterisation measurements and facilities provided by UPM.


  1. 1.
    R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)ADSGoogle Scholar
  2. 2.
    S. Jin, M. McCormack, T. Tiefel, R. Ramesh, J. Appl. Phys. 76, 6929 (1994)ADSGoogle Scholar
  3. 3.
    J. Coey, M. Viret, S. Von Molnar, Adv. Phys. 58, 571 (2009)ADSGoogle Scholar
  4. 4.
    C. Zener, Phys. Rev. 82, 403 (1951)ADSGoogle Scholar
  5. 5.
    H.A. Jahn, E. Teller, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci 161, 220 (1937)ADSGoogle Scholar
  6. 6.
    Z. Zhang, J. Li, W. Zhou, C. Yang, Q. Cao, D. Wang, Y. Du, Ceram. Int. 44, 3760 (2018)Google Scholar
  7. 7.
    H. Hwang, S. Cheong, N. Ong, A.B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996)ADSGoogle Scholar
  8. 8.
    D. Li, Q. Chen, Z. Li, Y. Li, H. Zhang, Y. Zhang, Ceram. Int. 44, 3448 (2018)Google Scholar
  9. 9.
    A. Sadhu, S. Bhattacharyya, Chem. Mater. 26, 1702 (2014)Google Scholar
  10. 10.
    P. Dey, T. Nath, Phys. Rev. B 73, 214425 (2006)ADSGoogle Scholar
  11. 11.
    T. Poojary, P. Babu, T. Sanil, M.D. Daivajna, Solid State Commun. 275, 35 (2018)ADSGoogle Scholar
  12. 12.
    U. Chand, K. Yadav, A. Gaur, G. Varma, J. Rare Earths 28, 760 (2010)Google Scholar
  13. 13.
    I.P. Muthuselvam, R. Bhowmik, J. Alloy. Compd. 511, 22 (2012)Google Scholar
  14. 14.
    S. Kansara, D. Dhruv, Z. Joshi, D. Pandya, S. Rayaprol, P. Solanki, D. Kuberkar, N. Shah, Appl. Surf. Sci. 356, 1272 (2015)ADSGoogle Scholar
  15. 15.
    X. Chen, Q. Chen, F. Jin, X. Liu, H. Zhang, J. Sol–Gel. Sci. Technol. 82, 177 (2017)Google Scholar
  16. 16.
    Q. Ren, Y. Zhang, Y. Chen, G. Wang, X. Dong, X. Tang, J. Sol–Gel Sci. Technol. 67, 170 (2013)Google Scholar
  17. 17.
    I. Chilibon, J.N. Marat-Mendes, J. Sol–Gel Sci. Technol. 64, 571 (2012)Google Scholar
  18. 18.
    D.R. Uhlmann, G. Teowee, J. Boulton, J. Sol–Gel Sci. Technol. 8, 1083 (1997)Google Scholar
  19. 19.
    K. Navin, R. Kurchania, Ceram. Int. 44, 4973 (2018)Google Scholar
  20. 20.
    H. Baaziz, A. Tozri, E. Dhahri, E. Hlil, J. Magn. Magn. Mater. 403, 181 (2016)ADSGoogle Scholar
  21. 21.
    S. Mandal, T. Nath, V. Rao, J. Phys. Condens. Matter 20, 385203 (2008)Google Scholar
  22. 22.
    S. Joseph, K.V. Saban, Ceram. Int. 45, 6425 (2019)Google Scholar
  23. 23.
    H.B. Khlifa, R. M’nassri, W. Cheikhrouhou-Koubaa, E. Hlil, A. Cheikhrouhou, Ceram. Int. 43, 1853 (2017)Google Scholar
  24. 24.
    H. Ben Khlifa, R. M’nassri, W. Cheikhrouhou-Koubaa, G. Schmerber, A. Cheikhrouhou, J. Magn. Magn. Mater. 466, 7 (2018)ADSGoogle Scholar
  25. 25.
    G. Akça, A.O. Ayaş, S.K. Çetin, M. Akyol, A. Ekicibil, J. Supercond. Novel Magn. 30, 1515 (2017)Google Scholar
  26. 26.
    S. Ng, K. Lim, S. Halim, H. Jumiah, Results Phys. 9, 1192 (2018)ADSGoogle Scholar
  27. 27.
    B. Arun, M.V. Suneesh, M. Vasundhara, J. Magn. Magn. Mater. 418, 265 (2016)ADSGoogle Scholar
  28. 28.
    P. Siwach, R. Prasad, A. Gaur, H. Singh, G. Varma, O. Srivastava, J. Alloy. Compd. 443, 26 (2007)Google Scholar
  29. 29.
    D.H. Manh, P.T. Phong, T.D. Thanh, L.V. Hong, N.X. Phuc, J. Alloy. Compd. 499, 131 (2010)Google Scholar
  30. 30.
    A. Anshul, S.S. Amritphale, S. Kaur, R. Hada, J. Mater. Sci. Technol. 27, 691 (2011)Google Scholar
  31. 31.
    R.C. Bhatt, S.K. Singh, P.C. Srivastava, S.K. Agarwal, V.P.S. Awana, J. Alloy. Compd. 580, 377 (2013)Google Scholar
  32. 32.
    S.S. Chen, C.P. Yang, Q. Dai, J. Alloy. Compd. 491, 1 (2010)Google Scholar
  33. 33.
    J. Ma, Y. Cai, W. Wang, Q. Cui, M. Theingi, H. Zhang, Q. Chen, Ceram. Int. 40, 4963 (2014)Google Scholar
  34. 34.
    S.B. Li, C.B. Wang, H.X. Liu, L. Li, Q. Shen, M.Z. Hu, L.M. Zhang, Mater. Res. Bull. 99, 73 (2018)Google Scholar
  35. 35.
    J. Zhang, Y. Xu, S. Cao, G. Cao, Y. Zhang, C. Jing, Phys. Rev. B 72, 054410 (2005)ADSGoogle Scholar
  36. 36.
    Y.K. Lakshmi, S. Manjunathrao, P.V. Reddy, Mater. Chem. Phys. 143, 983 (2014)Google Scholar
  37. 37.
    K. Cherif, A. Belkahla, J. Dhahri, E.K. Hlil, Ceram. Int. 42, 10537 (2016)Google Scholar
  38. 38.
    E. Zghal, M. Koubaa, P. Berthet, L. Sicard, W. Cheikhrouhou-Koubaa, C. Decorse-Pascanut, A. Cheikhrouhou, S. Ammar-Merah, J. Magn. Magn. Mater. 414, 97 (2016)ADSGoogle Scholar
  39. 39.
    D. Varshney, N. Dodiya, Curr. Appl. Phys. 13, 1188 (2013)ADSGoogle Scholar
  40. 40.
    M.H. Ehsani, P. Kameli, M.E. Ghazi, J. Phys. Chem. Solids 73, 744 (2012)ADSGoogle Scholar
  41. 41.
    S.O. Manjunatha, A. Rao, T.Y. Lin, C.M. Chang, Y.K. Kuo, J. Alloy. Compd. 619, 303 (2015)Google Scholar
  42. 42.
    P.T. Phong, L.V. Bau, L.C. Hoan, D.H. Manh, N.X. Phuc, I.-J. Lee, J. Alloy. Compd. 656, 920 (2016)Google Scholar
  43. 43.
    Y. Zhou, X. Zhu, S. Li, Ceram. Int. 43, 3679 (2017)Google Scholar
  44. 44.
    A. Modi, M.A. Bhat, D.K. Pandey, S. Bhattacharya, N.K. Gaur, G.S. Okram, J. Magn. Magn. Mater. 424, 459 (2017)ADSGoogle Scholar
  45. 45.
    M.A. Bhat, A. Modi, S. Bhattacharya, N.K. Gaur, G.S. Okram, J. Alloy. Compd. 691, 230 (2017)Google Scholar
  46. 46.
    M. Nasri, M. Triki, E. Dhahri, E.K. Hlil, P. Lachkar, J. Alloy. Compd. 576, 404 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Superconductor and Thin Film Laboratory, Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations