Applied Physics A

, 125:754 | Cite as

Tailoring of graphene quantum dots for toxic heavy metals detection

  • Hamid Reza GhenaatianEmail author
  • Mehdi Shakourian-FardEmail author
  • Masoud Rohani Moghadam
  • Ganesh Kamath
  • Mohsen Rahmanian


The sensitivity of graphene quantum dots towards toxic heavy metals (THMs; Cd, Hg, Pb) can be improved through doping with nitrogen at the vacant site defects. Using density functional theory, we investigate the adsorption of THMs on the graphene quantum dots (GQDs) and nitrogen-coordinated defective GQDs (GQD@1N, GQD@2N, GQD@3N and GQD@4N) surfaces. Thermochemistry calculations reveal that the adsorption of Pb atom on the surfaces is more favorable than Cd and Hg adsorption. The decoration of the vacant defects with nitrogen on the GQD surface substantially increases the charge transfer and adsorption energy values of THMs on the GQD surface (GQD@4N > GQD@3N > GQD@1N > GQD@2N > GQD). The charge transfer and adsorption energy of lead on each of these surfaces are greater than those of cadmium and mercury (Pb > Cd > Hg). Quantum theory of atoms in molecules analysis and non-covalent interaction plots further validate this result while also confirming that Pb atom has a partially covalent and electrostatic nature of interaction at the nitrogen-coordinated vacant site defects. The electron density values—a criterion of bond strength—for the THM...N interactions are greater than for the THM…C interactions, confirming the observed adsorption energy trends of the THMs on the surfaces. The lowering of the HOMO–LUMO energy gap of the surfaces follows the order Pb > Cd > Hg and also results in increased electrical conductivity, which are consistent with the calculated adsorption energy trends. Significant changes in the energy gap and electric conductivity of the surfaces upon THMs adsorption make them promising sensors for metal detection. Finally, time-dependent density functional theory calculations showed that changes such as peak shifts, peak quenching and appearance of new peaks are seen in the UV–visible absorption spectra of the surfaces upon adsorption of THMs, wherein the shifts in peaks correspond to the magnitude of adsorption energy of THMs on the surfaces. These results should motivate the experimentalists towards using rational and systematic modulation of surfaces as sensors for heavy metal detection.



We gratefully acknowledge financial support from the Research Council of Jahrom University and Birjand University of Technology.

Supplementary material

339_2019_3042_MOESM1_ESM.docx (8.1 mb)
This material contains the results of QTAIM analysis, electrostatic potential (ESP) molecular surfaces, non-covalent interaction (NCI) plots and TDDFT results of the surfaces and their complexes with THMs (DOCX 8283 kb)


  1. 1.
    L. Järup, Br. Med. Bull. 68, 167–182 (2003)Google Scholar
  2. 2.
    P. Nagajyoti, K. Lee, T. Sreekanth, Environ. Chem. Lett. 8, 199–216 (2010)Google Scholar
  3. 3.
    M. Jaishankar, B.B. Mathew, M.S. Shah, K. Murthy, K. Gowda, J. Environ. Pollut. Hum. Health 2, 1–6 (2014)Google Scholar
  4. 4.
    C. Chaffei, K. Pageau, A. Suzuki, H. Gouia, M.H. Ghorbel, C. Masclaux-Daubresse, Plant Cell Physiol. 45, 1681–1693 (2004)Google Scholar
  5. 5.
    J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg, A. Reich, D.A. Groneberg, J. Occup. Med. Toxicol. 1, 22–27 (2006)Google Scholar
  6. 6.
    A.K. Krishna, K.R. Mohan, Environ. Earth Sci. 75, 411–427 (2016)Google Scholar
  7. 7.
    G. Zhao, H. Wang, G. Liu, Int. J. Electrochem. Sci 12, 8622–8641 (2017)Google Scholar
  8. 8.
    B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, Biosens. Bioelectron. 94, 443–455 (2017)Google Scholar
  9. 9.
    R. Mahmoudi, M. Kazeminia, A. Kaboudari, S. Pir-Mahalleh, B. Pakbin, Malays. J. Sci. 36, 1–16 (2017)Google Scholar
  10. 10.
    M. Saidur, A.A. Aziz, W. Basirun, Biosens. Bioelectron. 90, 125–139 (2017)Google Scholar
  11. 11.
    S. Zhan, Y. Wu, L. Wang, X. Zhan, P. Zhou, Biosens. Bioelectron. 86, 353–368 (2016)Google Scholar
  12. 12.
    M. Li, H. Gou, I. Al-Ogaidi, N. Wu, ACS Sustain. Chem. Eng. 1, 713–723 (2013)Google Scholar
  13. 13.
    I. Shtepliuk, J. Eriksson, V. Khranovskyy, T. Iakimov, A.L. Spetz, R. Yakimova, Beilstein. J. Nanotechnol. 7, 1800–1814 (2016)Google Scholar
  14. 14.
    A. Habineza, J. Zhai, T. Ntakirutimana, F.P. Qiu, X. Li, Q. Wang, Desalin. Water Treat. 78, 192–214 (2017)Google Scholar
  15. 15.
    V. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A. Makhlouf, M. Goodarzi, A. Garshasbi, Crit. Rev. Environ. Sci. Technol. 46, 93–118 (2016)Google Scholar
  16. 16.
    E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A.H. Mahvi, J. Environ. Health Sci. Eng. 13, 74–89 (2015)Google Scholar
  17. 17.
    C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Anal. Chem. 87, 230–249 (2014)Google Scholar
  18. 18.
    F. Cervantes-Sodi, G. Csányi, S. Piscanec, A. Ferrari, Phys. Rev. B 77, 165427–165439 (2008)ADSGoogle Scholar
  19. 19.
    T. Zhang, X. Li, H. Gao, Int. J. Fract. 196, 1–31 (2015)Google Scholar
  20. 20.
    S. Gadipelli, Z.X. Guo, Prog. Mater. Sci. 69, 1–60 (2015)Google Scholar
  21. 21.
    A. Wisitsoraat, A. Tuantranont, Graphene-based chemical and biosensors. In: Tuantranont A (ed.), Applications of Nanomaterials in Sensors and Diagnostics (Springer, 2013), p. 103Google Scholar
  22. 22.
    J.M. Irudayaraj, Biomedical Nanosensors (Pan Stanford, Singapore, 2012)Google Scholar
  23. 23.
    W. YangáTeoh, RSC Adv. 4, 24653–24657 (2014)Google Scholar
  24. 24.
    K. Chen, G. Lu, J. Chang, S. Mao, K. Yu, S. Cui, J. Chen, Anal. Chem. 84, 4057–4062 (2012)Google Scholar
  25. 25.
    P.M. Lee, Z. Chen, L. Li, E. Liu, Electrochim. Acta 174, 207–214 (2015)Google Scholar
  26. 26.
    K. Pokpas, S. Zbeda, N. Jahed, N. Mohamed, P. Baker, E.I. Iwuoha, Int. J. Electrochem. Sci. 9, 736–759 (2014)Google Scholar
  27. 27.
    J. Chang, G. Zhou, X. Gao, S. Mao, S. Cui, L.E. Ocola, C. Yuan, J. Chen, Sens. Biosensing Res. 5, 97–104 (2015)Google Scholar
  28. 28.
    P.M. Lee, H.W. Ng, J.D. Lim, N.W. Khun, Z. Chen, E. Liu, Electroanalysis 28, 2037–2043 (2016)Google Scholar
  29. 29.
    Y. Wei, C. Gao, F.L. Meng, H.H. Li, L. Wang, J.H. Liu, X.J. Huang, J. Phys. Chem. C 116, 1034–1041 (2011)Google Scholar
  30. 30.
    C. Wang, X. Cui, Y. Li, H. Li, L. Huang, J. Bi, J. Luo, L.Q. Ma, W. Zhou, Y. Cao, Sci. Rep. 6, 21711–21718 (2016)ADSGoogle Scholar
  31. 31.
    L. Cui, J. Wu, H. Ju, Biosens. Bioelectron. 63, 276–286 (2015)Google Scholar
  32. 32.
    D. Wang, V. Noël, B. Piro, Electronics 5, 9–32 (2016)Google Scholar
  33. 33.
    M. Lü, J. Li, X. Yang, C. Zhang, J. Yang, H. Hu, X. Wang, Chin. Sci. Bull. 58, 2698–2710 (2013)Google Scholar
  34. 34.
    X. Xuan, M.F. Hossain, J.Y. Park, Sci. Rep. 6, 33125–33132 (2016)ADSGoogle Scholar
  35. 35.
    G. Zhao, Y. Si, H. Wang, G. Liu, Int. J. Electrochem. Sci 11, 54–64 (2016)Google Scholar
  36. 36.
    S.K. Pandey, P. Singh, J. Singh, S. Sachan, S. Srivastava, S.K. Singh, Electroanalysis 28, 2472–2488 (2016)Google Scholar
  37. 37.
    S.L. Ting, S.J. Ee, A. Ananthanarayanan, K.C. Leong, P. Chen, Electrochim. Acta 172, 7–11 (2015)Google Scholar
  38. 38.
    I. Shtepliuk, N.M. Caffrey, T. Iakimov, V. Khranovskyy, I.A. Abrikosov, R. Yakimova, Sci. Rep. 7, 3934–3950 (2017)ADSGoogle Scholar
  39. 39.
    Z. Liu, Y. Zhang, B. Wang, H. Cheng, X. Cheng, Z. Huang, Appl. Surf. Sci. 427, 547–553 (2018)ADSGoogle Scholar
  40. 40.
    I. Shtepliuk, R. Yakimova, PCCP 20, 21528–21543 (2018)ADSGoogle Scholar
  41. 41.
    S. Lee, J. Oh, D. Kim, Y. Piao, Talanta 160, 528–536 (2016)Google Scholar
  42. 42.
    S. Lee, S.K. Park, E. Choi, Y. Piao, J. Electroanal. Chem. 766, 120–127 (2016)Google Scholar
  43. 43.
    X. Li, H. Zhou, W. Wu, S. Wei, Y. Xu, Y. Kuang, J. Colloid Interface Sci. 448, 389–397 (2015)ADSGoogle Scholar
  44. 44.
    Y. Zhang, C. Zhong, Q. Zhang, B. Chen, M. He, B. Hu, RSC Adv. 5, 5996–6005 (2015)Google Scholar
  45. 45.
    Z. Dong, F. Zhang, D. Wang, X. Liu, J. Jin, J. Solid State Chem. 224, 88–93 (2015)ADSGoogle Scholar
  46. 46.
    Z. Dong, D. Wang, X. Liu, X. Pei, L. Chen, J. Jin, J. Mater. Chem. A 2, 5034–5035 (2014)Google Scholar
  47. 47.
    S. Muralikrishna, K. Sureshkumar, T.S. Varley, D.H. Nagaraju, T. Ramakrishnappa, Anal. Methods 6, 8698–8705 (2014)Google Scholar
  48. 48.
    C. Göde, M.L. Yola, A. Yılmaz, N. Atar, S. Wang, J. Colloid Interface Sci. 508, 525–531 (2017)ADSGoogle Scholar
  49. 49.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'Homme, I.A. Aksay, R. Car, Nano Lett. 8, 36–41 (2008)ADSGoogle Scholar
  50. 50.
    O.V. Yazyev, S.G. Louie, Nat. Mater. 9, 806–809 (2010)ADSGoogle Scholar
  51. 51.
    Z.Q. Bao, J.J. Shi, M. Yang, S. Zhang, M. Zhang, Chem. Phys. Lett. 510, 246–251 (2011)ADSGoogle Scholar
  52. 52.
    Z. Yong-Hui, C. Ya-Bin, Z. Kai-Ge, L. Cai-Hong, Z. Jing, Z.H. Li, P. Yong, Nanotechnology 20, 185504–185512 (2009)ADSGoogle Scholar
  53. 53.
    F.A.L. de Souza, R.G. Amorim, J. Prasongkit, W.L. Scopel, R.H. Scheicher, A.R. Rocha, Carbon 129, 803–808 (2018)Google Scholar
  54. 54.
    Y.H. Zhang, L.F. Han, Y.H. Xiao, D.Z. Jia, Z.H. Guo, F. Li, Comput. Mater. Sci. 69, 222–228 (2013)Google Scholar
  55. 55.
    X. Gao, Y. Zhou, Y. Tan, Z. Cheng, Q. Tang, J. Jia, Z. Shen, Energy Fuels 32, 5331–5337 (2018)Google Scholar
  56. 56.
    W. Zhou, M.D. Kapetanakis, M.P. Prange, S.T. Pantelides, S.J. Pennycook, J.C. Idrobo, Phys. Rev. Lett. 109, 206803–206807 (2012)ADSGoogle Scholar
  57. 57.
    Y. Tang, W. Chen, Z. Shen, S. Chang, M. Zhao, X. Dai, Carbon 111, 448–458 (2017)Google Scholar
  58. 58.
    Y.C. Lin, P.Y. Teng, C.H. Yeh, M. Koshino, P.W. Chiu, K. Suenaga, Nano Lett. 15, 7408–7413 (2015)ADSGoogle Scholar
  59. 59.
    D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.S.K. Sham, X. Sun, S. Ye, S. Knights, Appl. Surf. Sci. 257, 9193–9198 (2011)ADSGoogle Scholar
  60. 60.
    T.G. Nakajima, K. Fujisawa, V. Anil, M. Terrones, Y.T. Yeh, Nanomaterials 9, 425–442 (2019)Google Scholar
  61. 61.
    J. Zhu, A.S. Childress, M. Karakaya, S. Dandeliya, A. Srivastava, Y. Lin, A.M. Rao, R. Podila, Adv. Mater. 28, 7185–7192 (2016)Google Scholar
  62. 62.
    Y.P. Lin, Y. Ksari, J. Prakash, L. Giovanelli, J.C. Valmalette, J.M. Themlin, Carbon 73, 216–224 (2014)Google Scholar
  63. 63.
    R. Lv, Q. Li, A.R.B. Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz-Silva, H.R. Gutiérrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, M. Terrones, Sci. Rep. 2, 563–586 (2012)Google Scholar
  64. 64.
    E.H. Åhlgren, J. Kotakoski, A.V. Krasheninnikov, Phys. Rev. B 83, 115424–115430 (2011)ADSGoogle Scholar
  65. 65.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D. 1 (Gaussian, Inc., Wallingford, 2010)Google Scholar
  66. 66.
    D. Feller, J. Comput. Chem. 17, 1571–1573 (1996)Google Scholar
  67. 67.
    K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, J. Chem. Inf. Model. 47, 1045–1052 (2007)Google Scholar
  68. 68.
    S. Grimme, J. Antony, S. Ehrlich, S. Krieg, J. Chem. Phys. 132, 154104–154123 (2010)ADSGoogle Scholar
  69. 69.
    Y. Wang, Z. Xu, Y.N. Moe, Chem. Phys. 406, 78–85 (2012)ADSGoogle Scholar
  70. 70.
    M.H. Ghatee, F. Moosavi, J. Phys. Chem. C 115, 5626–5636 (2011)Google Scholar
  71. 71.
    M. Shakourian-Fard, Z. Jamshidi, A. Bayat, G. Kamath, J. Phys. Chem. C 119, 7095–7108 (2015)Google Scholar
  72. 72.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553–566 (1970)ADSGoogle Scholar
  73. 73.
    C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11, 361–373 (1990)Google Scholar
  74. 74.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899–926 (1988)Google Scholar
  75. 75.
    R.F.W. Bader, Atoms in molecules: A Quantum Theory (Oxford University Press, Oxford, 1994), pp. 1–458Google Scholar
  76. 76.
    F. Biegler-König, J. Schönbohm, J. Comput. Chem. 22, 545–559 (2001)Google Scholar
  77. 77.
    E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, J. Am. Chem. Soc. 132, 6498–6506 (2010)Google Scholar
  78. 78.
    J.C. García, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan, W. Yang, J. Chem. Theory Comput. 7, 625–632 (2011)Google Scholar
  79. 79.
    S.S. Li, Scattering mechanisms and carrier mobilities in semiconductors, in Semiconductor Physical Electronics, ed. by S.S. Li (Springer, New York, 2006), pp. 211–245Google Scholar
  80. 80.
    K. Nakada, A. Ishii, DFT calculation for adatom adsorption on grapheme. In Graphene Simulation (InTech, Janeza Trdine 9, 51000 Rijeka, Croatia, 2011), pp. 1–20Google Scholar
  81. 81.
    M. Legesse, F. El Mellouhi, E.T. Bentria, M.E. Madjet, T.S. Fisher, S. Kais, F.H. Alharbi, Appl. Surf. Sci. 394, 98–107 (2017)ADSGoogle Scholar
  82. 82.
    W.C. Martin, A. Musgrove, S. Kotochigova, National Institute of Standards and Technology, Gaithersburg, MD (2002).
  83. 83.
    M. Shakourian-Fard, Z. Jamshidi, G. Kamath, ChemPhysChem 17, 3289–3299 (2016)Google Scholar
  84. 84.
    M. Shakourian-Fard, G. Kamath, Phys. Chem. Chem. Phys. 19, 4383–4395 (2017)Google Scholar
  85. 85.
    R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 39, 2360–2366 (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsJahrom UniversityJahromIran
  2. 2.Department of Chemical EngineeringBirjand University of TechnologyBirjandIran
  3. 3.Department of Chemistry, Faculty of ScienceVali-e-Asr UniversityRafsanjanIran
  4. 4.Dalzierfiver LLCEl SobranteUSA
  5. 5.Department of Computer EngineeringJahrom UniversityJahromIran

Personalised recommendations