Advertisement

Applied Physics A

, 125:741 | Cite as

Effect of TiO2 doping on structural and optical properties of CdSZn3(PO4)2 nanocomposites

  • G. Sreedevi
  • S. K. Khaja Muswareen
  • V. Jayalakshmi
  • Sandhya ColeEmail author
Article
  • 53 Downloads

Abstract

Pure and (0.3, 0.6 and 0.9 mol%) TiO2-doped CdSZn3(PO4)2semiconducting nanocomposites were successfully synthesized by hydrothermal route. The structural compositions, surface morphology, diffuse reflectance spectroscopy and luminescence properties of all the nanocomposites were systematically investigated. X-ray diffraction pattern exhibits the co-existence of both hexagonal phase of CdS and a mixer of γ and β monoclinic Zn3(PO4)2 phases with high crystalline order. Upon increasing of TiO2 content from 0.3 to 0.9 mol%, γ-Zn3(PO4)2 phase is decreasing while β-Zn3(PO4)2 phase is found to increase. Further, it has been found that the TiO2 additive atoms did not segregate to form secondary phases but led to variation in grain size, local disorder and local strain in the nanocomposites. The average crystallite size of nanocomposites is in the range 22–25 nm. The surface morphology of the samples was clearly shown as flakes surrounded by hexagonal CdS spheres like heterostructure type morphology. EDAX results confirm the stoichiometry of all the samples with slight variation of CdS content with increasing TiO2 dopant content. Optical band gap values are found to decrease from 2.52 to 2.44 eV with increasing TiO2 content. Further, photoluminescence studies revealed that all the samples exhibited strong fluorescence in the visible wavelength region and the chromaticity characteristics from CIE diagram were also explored in search of their applicability for commercial LED applications.

Notes

Acknowledgements

The authors express special thanks to DST-FIST, New Delhi, for sanctioning equipment to the Department of Physics, Acharya Nagarjuna University. One of the authors G. Sreedevi expresses her sincere thanks to Nanotechnology Research lab, PVPSIT, Vijayawada, A.P. The authors would like to acknowledge Dr. D. Paul Joseph of Department of Physics, NIT Warangal, for granting permission to use UV–Vis spectrophotometer. This work is financially supported by the Siddhartha Academy of General and Technical Education, Vijayawada, A.P., India.

References

  1. 1.
    T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S.K. Sharma, B. Viana, A.J.J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, C. Richard, The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Renjia Zhou Chen, Ligong Yang, Minminshi, Gang Wu, Mang Wang, Hongzheng Chen, One-Step Fabrication of CdS Nano rod arrays via Solution Chemistry. J. Phys. Chem. 112, 13457–13462 (2008)Google Scholar
  3. 3.
    R. Elilarassi, S. Maheshwari, G. Chandrasekaran, Structural and optical characterization of CdS nanoparticles synthesized by using a simple chemical reaction route. J. Optoelectronic. Adv. M. 4(3), 309–312 (2010)Google Scholar
  4. 4.
    J. Hang, Y. Yang, F. Jiang, J. Li, B. Xu, S. Wang, X. Wang, Fabrication of semiconductor CdS hierarchical nanostructures. J Cryst Growth 293, 236–241 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Zhu, Y.U.H. Liu, G. Chen, C. Zhu, Synthesis of CdS Cauliflower-like microspheres via a template-free hydrothermal method. Mater. Lett. 107(15), 90–92 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, X. Yang, Q. Ma, J. Kong, H. Jia, Z. Wang, M. Yu, Preparation of flower-like CdS with SDBS as surfactant by hydrothermal method and its optical properties. Appl Surf Sci 340(15), 18–24 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Y.K. BalramTripathi, F. Vijay, D.K. Sing, S. Avasthi, wate, Study of C6+ (80 MeV) ion induced effects on CdS: Mn system. J. Alloy compd. 459(1–2), 118–122 (2008)Google Scholar
  8. 8.
    E.V. Kolobkov, A.A. Lipovski, N.V. Nikonoro, A.A. Sitnikova, Phosphate glasses doped with CdS nanocrystals. Phys. Stat. Sol. (a) 147, K65–K68 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Wang, D. Li, J.K. Liu, X.H. Yang, J.L. He, Y. Lu, One-step preparation and characterization of zinc phosphate nanocrystals with modified surface. JSNL 1, 81–85 (2011)Google Scholar
  10. 10.
    B. Grzmil, B. Kic, K. Lubkowski, studies on obtaining of zinc phosphate nanomaterials. Rev. Adv. Mater. Sci. 14, 46–48 (2007)Google Scholar
  11. 11.
    SangilSeok KaheeShin, SangHyukIm, Jong Hyeok Park, CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. R. Soc. Chem. 46, 2385–2387 (2010)Google Scholar
  12. 12.
    S.S. Liu, N. Zhang, Z.R. Tang, Y.J. Xu, Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photo catalyst for selective redox: the dual role of TiO2. ACS Appl. Mater. Interfaces 4, 6378–6385 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Xie, H. Guo, J. Zhang, Y. He, H. Lin, G. Chen, Z. Zheng, Effects of oxygen vacancies on luminescent properties of green long-lasting phosphorescent (LLP) material α-Zn3(PO4)2: Mn2+, K+. J. Lumin. 170, 150–154 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Lu, C.J. Tsai, Hydrothermal phase transformation of hematite to magnetite. Nanoscale Res. Lett. 9(1), 230 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    CRISPIN CALVO, the crystal structure and phase transitions OF β-Zn2P2O7. Can. J. Chem. 43, 1147–1153 (1965).Google Scholar
  16. 16.
    Z. Li, B. Hou, Y. Xu, D. Wu, Y. Sun, W. Hu, F. Deng, Comparative study of sol-gel hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles. J Solid State Chem 178(2005), 1395–1405 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, Structural, optical and magnetic studies on non-aqueous synthesized CdS: in nanomaterials. J Alloys Compd 538, 48–55 (2012)CrossRefGoogle Scholar
  18. 18.
    N.H. Patel, M.P. Deshpande, S.V. Bhatt, K.R. Patel, S.H. Chaki, Structural and magnetic properties of undoped and Mn-doped CdS nanoparticles prepared by chemical co-precipitation method. Adv Mater Lett 5(11), 671–677 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Satyavathi, M. Subbarao, Y. Nagabhaskararao, Cole, structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO Nanopowders. J Phys Chem Solids 112, 200–208 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Ulrike Diebold, The surface of titanium dioxide. Surf Sci Rep. 48, 53–229 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    L.L. Pan, G.Y. Li, S.S. Xiao, L. Zhao, J.S. Lian, Band gap variation in grain size controlled nanostructured CdO thin films deposited by a pulsed-laser method. J Mater Sci Mater Electron 25, 1003–1012 (2014)CrossRefGoogle Scholar
  22. 22.
    A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13, 251–256 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    ThirumalaRao G, Babu B, Joycestella R, PushpaManjari V VenkataReddy C, Shimb J, Ravikumar RVSSN, Synthesis and characterization of VO2+ doped ZnO–CdS composite nanopowder. J. Mol. Struct. 1081, 254–259 (2015)Google Scholar
  24. 24.
    E.C. Delacruzterrazasa, R.C. Ambrosiolázaro, M.L. Motagonzáleza, P.A. Luque, S.J. Castillo, A. Carrillo-castillo, A simple method for the synthesis of CdS nanoparticles using a novel surfactant. Chalcogenide Lett. 12(4), 147–153 (2015)Google Scholar
  25. 25.
    D. AmaranathaReddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Appl. Surf. Sci. 258(13), 5206–5211 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    W. Li, X. Cui, P. Wang, Y. Shao, D. Li, F. Teng, Enhanced photo sensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation. Mater. Res. Bull. 48(9), 3025–3031 (2013)CrossRefGoogle Scholar
  27. 27.
    M.A. Islam, K.S. Rahman, F. Haque, N. Dhar, M. Salim, M. Akhtaruzzaman, K. Sopian, N. Amin, Opto-electrical properties of in doped CdS thin films by co-sputtering technique. J. Ovonic Res. 10(5), 185–190 (2014)Google Scholar
  28. 28.
    D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841–2845 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Xi, J. Zhou, H. Guo, C. Cai, L. Lin, Enhanced photoluminescence in core-sheath CdS–PANI coaxial nanocables: a charge transfer mechanism. Chem. Phys. Lett. 412, 60–64 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Carl J. Barrelet, Wu Yue, David C. Bell, Charles M. Lieber, Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125(38), 11498–11499 (2003)CrossRefGoogle Scholar
  31. 31.
    D. Yue, L. Wei, C. Li, X. Zhang, C. Liu, Z. Wang, Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase. Morphol. Luminesc. Prop. Nanoscale 6, 2137–2145 (2014)Google Scholar
  32. 32.
    Haotong Wei, Haizhu Sun, Hao Zhang, Cong Gao, Bai Yang, An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Res 3, 496–505 (2010)CrossRefGoogle Scholar
  33. 33.
    S.J. Mofokeng, V. Kumar, R.E. Kroon, O.M. Ntwaeaborwa, Structure and optical properties of Dy3+ activated sol-gel ZnO–TiO2 nanocomposites. J. Alloys Compd. 711, 121–131 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Som, P. Mitr, V. Vijaykumar, J.J. Terblans, H.C. Swarta, S.K. Sharma, The energy transfer phenomena and color tunability in Y2O2S: Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans. 43, 9860–9871 (2014)CrossRefGoogle Scholar
  35. 35.
    P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, QD-LEDs with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    B. Ullricha, D.M. Bagnalla, H. Sakaib, Y. Segawa, Photoluminescence properties of thin CdS films on glass formed by laser ablation. Solid State Commun. 109, 757–760 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAcharya Nagarjuna UniversityNagarjuna NagarIndia
  2. 2.Department of PhysicsPVP Siddhartha Institute of TechnologyVijayawadaIndia
  3. 3.Department of PhysicsNational Institute of TechnologyWarangalIndia

Personalised recommendations