Applied Physics A

, 125:737 | Cite as

Tunable spoof surface plasmon polariton transmission line based on ferroelectric thick film

  • Jing Lou
  • Jun WangEmail author
  • Hua MaEmail author
  • Mingde Feng
  • Zhiqiang Li
  • Jiafu Wang
  • Shaobo Qu


Spoof surface plasmon polaritons (SSPPs) provide a high field confinement in the sub-wavelength scale and low transmission loss in the propagation, which are widely used in microwave functional devices. In this paper, we first propose a tunable SSPP transmission line (TL) based on ferroelectric thick film. The ferroelectric thick film associated with the SSPP planar waveguide can provide an electrically tunable transmission phase. Two electric-field-coupled inductive–capacitive (ELC) resonators are added in the configuration to inspire the coupling between ELC resonant modes and SSPPs, enabling the tunable TL to work in the frequency-selective transmission passband. It is demonstrated that the SSPP mode can be designed in higher or lower confinement to modulate the electromagnetic field strength inside the ferroelectric thick film. This property promotes a balanced design between low transmission loss and large phase change for tunable TL. As a result, this study provides an alternative route to design tunable SSPP devices based on ferroelectric thick film, which may open up new applications in tunable microwave devices.



The authors are grateful to the support from the National Natural Science Foundation of China (Grant nos. 61671467 and 61671466).


  1. 1.
    W.L. Barnes, A. Dereuxand, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)ADSGoogle Scholar
  2. 2.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)Google Scholar
  3. 3.
    Z.L. Wang, A review on research progress in surface plasmons. Prog Phys 29, 287 (2009)Google Scholar
  4. 4.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)ADSGoogle Scholar
  5. 5.
    F. Wei, Z. Liu, Plasmonic structured illumination microscopy. Nano Lett. 10, 2531 (2010)ADSGoogle Scholar
  6. 6.
    Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry–Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011)ADSGoogle Scholar
  7. 7.
    J.Q. Shen, Electromagnetically-induced-transparency plasmonics: quantum-interference-assisted tunable surface-plasmonpolariton resonance and excitation. Phys. Rev. A 90, 023814 (2014)ADSGoogle Scholar
  8. 8.
    Z. Zhang, L. Zhang, H. Li, H. Chen, Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl. Phys. Lett. 104, 231114 (2014)ADSGoogle Scholar
  9. 9.
    O. Krupin, H. Asiri, C. Wang, R.N. Tait, P. Berini, Biosensing using straight long-range surface plasmon waveguides. Opt. Exp. 21, 698 (2013)ADSGoogle Scholar
  10. 10.
    K. Gazzaz, P. Berini, Theoretical biosensing performance of surface plasmon polariton Bragg gratings. Appl. Opt. 54, 1673 (2015)ADSGoogle Scholar
  11. 11.
    M.A. Awal, Z. Ahmed, M.A. Talukder, An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. J. Appl. Phys. 117, 063109 (2015)ADSGoogle Scholar
  12. 12.
    J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004)ADSGoogle Scholar
  13. 13.
    X.P. Shen, T.J. Cui, J.D. Francisco, V. Garcia, Conformal surface plasmons propagating on ultrathin and flexible film. Proc. Natl. Acad. Sci. 110, 40 (2013)ADSGoogle Scholar
  14. 14.
    T.J. Cui, Microwave metamaterials from passive to digital and programmable controls of electromagnetic waves. J. Opt. 19, 084004 (2017)ADSGoogle Scholar
  15. 15.
    W.X. Zhang, G.Q. Zhu, L.G. Sun, T.J. Cui, Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl. Phys. Lett. 106, 021104 (2015)ADSGoogle Scholar
  16. 16.
    X.P. Shen, T.J. Cui, Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett. 102, 211909 (2013)ADSGoogle Scholar
  17. 17.
    J.J. Wu, D.J. Hou, K.X. Liu, L.F. Shen, C.A. Tsai, C.J. Wu, D. Tsai, T.J. Yang, Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons. Opt. Express 22, 26777 (2014)ADSGoogle Scholar
  18. 18.
    H.C. Zhang, T.J. Cui, Q. Zhang, Y. Fan, X. Fu, Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333 (2015)Google Scholar
  19. 19.
    X. Gao, L. Zhou, Z. Liao, H.F. Ma, T.J. Cui, An ultra-wideband surface plasmonic filter in microwave frequency. Appl. Phys. Lett. 104, 191603 (2014)ADSGoogle Scholar
  20. 20.
    X. Gao, L. Zhou, X.Y. Yu, W.P. Cao, H.O. Li, H.F. Ma, T.J. Cui, Ultra-wideband surface plasmonic Y-splitter. Opt. Express 23, 23270 (2015)ADSGoogle Scholar
  21. 21.
    J.Y. Yin, J. Ren, H.C. Zhang, B.C. Pan, T.J. Cui, Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep. 5, 8165 (2015)ADSGoogle Scholar
  22. 22.
    B.C. Pan, J. Zhao, Z. Liao, H.C. Zhang, T.J. Cui, Multi-layer topological transmissions of spoof surface plasmon polaritons. Sci. Rep. 6, 22702 (2016)ADSGoogle Scholar
  23. 23.
    J.J. Wu, D.J. Hou, T.J. Yang, I.J. Hsieh, Y.H. Kao, H.E. Lin, Bandpass filter based on low frequency spoof surface plasmon polaritons. Electron. Lett. 48, 269 (2012)Google Scholar
  24. 24.
    Y. Han, Y. Li, H. Ma, J. Wang, D. Feng, S. Qu, J Zhang (2017) Multibeam antennas based on spoof surface plasmon polaritons mode coupling. IEEE Trans. Antennas Propag. 65, 1187 (2017)ADSzbMATHGoogle Scholar
  25. 25.
    M.D. Domenico, D.A. Johnson, R.H. Pantell, Ferroelectric harmonic generator and the large-signal microwave characteristics of a ferroelectric ceramic. J. Appl. Phys. 33, 1697 (1962)ADSGoogle Scholar
  26. 26.
    D. Kuylenstierna, A. Vorobiev, P. Linner, S. Gevorgian, Composite right/left handed transmission line phase shifter using ferroelectric varactors. IEEE Microw. Wirel. Compon. Lett. 16, 167 (2006)Google Scholar
  27. 27.
    A. Mahmud, T.S. Kalkur, A. Jamil, N. Cramer, A 1-GHz active phase shifter with a ferroelectric varactor. IEEE Microw. Wirel. Compon. Lett. 16, 261 (2006)Google Scholar
  28. 28.
    M. Zhu, Z. Du, L. Jing, A. Tok, E. Teo, Optical and electro-optic anisotropy of epitaxial PZT thin film. Appl. Phys. Lett. 107, 031907 (2015)ADSGoogle Scholar
  29. 29.
    Q. Zhang, J. Zhai, L. Kong, X. Yao, Investigation of ferroelectric phase transition for barium strontium titanate ceramics by in situ Raman scattering. J. Appl. Phys. 112, 124112 (2012)ADSGoogle Scholar
  30. 30.
    P. Bao, T.J. Jackson, X. Wang, M.J. Lancaster, Barium strontium titanate thin film varactors for room-temperature microwave device applications. J. Phys. D 41, 063001 (2008)ADSGoogle Scholar
  31. 31.
    B. Su, J.E. Holmes, C. Meggs, T.W. Button, Dielectric and microwave properties of barium strontium titanate (BST) thick film on alumina substrates. J. Eur. Ceram. Soc. 23, 2699 (2003)Google Scholar
  32. 32.
    V.K. Palukuru, J. Peräntie, M. Komulainen, M. Tick, H. Jantunen, Tunable microwave devices using low-sintering-temperature screen-printed barium strontium titanate (BST) thick film. J. Eur. Ceram. Soc. 30, 389 (2010)Google Scholar
  33. 33.
    X. Zhou, M. Sazegar, F. Stemme, J. Haußelt, R. Jakoby, J.R. Binder, Correlation of the microstructure and microwave properties of Ba0.6Sr0.4TiO3 thick-film. J. Eur. Ceram. Soc. 32, 4311 (2012)Google Scholar
  34. 34.
    A. Friederich, C. Kohler, M. Nikfalazar, A. Wiens, M. Sazegar, R. Jakoby, W. Bauer, J.R. Binder, Microstructure and microwave properties of inkjet printed barium strontium titanate thick-film for tunable microwave devices. J. Eur. Ceram. Soc. 34, 2925 (2014)Google Scholar
  35. 35.
    Y.L. Bian, C. Wu, H.Q. Li, J.W. Zhai, A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film. Appl. Phys. Lett. 104, 042906 (2014)ADSGoogle Scholar
  36. 36.
    B.W. Dong, H. Ma, J. Wang, P. Shi, J. Li, L. Zhu, J. Lou, M. Feng, S.B. Qu, A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film. J. Phys. D 52, 045301 (2018)ADSGoogle Scholar
  37. 37.
    H.C. Zhang, Q. Zhang, J.F. Liu, W.X. Tang, Y.F. Fan, T.J. Cui, Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci. Rep. 6, 23396 (2016)ADSGoogle Scholar
  38. 38.
    H.F. Ma, X.P. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 1, 146 (2014)ADSGoogle Scholar
  39. 39.
    S. Liu, T.J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. Tang, C. Ouyang, X. Zhou, H. Yuan, H. Ma, W. Jiang, J. Han, W. Zhang, Q. Cheng, Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5, e16076 (2016)Google Scholar
  40. 40.
    B. Zhou, H. Li, X. Zou, T.J. Cui, Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index materials. Prog. Electromagn. Res. 120, 235 (2011)Google Scholar
  41. 41.
    B.C. Pan, Z. Liao, T.J. Cui, Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt Exp. 22, 13940 (2014)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic SciencesAir Force Engineering UniversityXi’anChina

Personalised recommendations