Advertisement

Applied Physics A

, 125:739 | Cite as

Selective rear-side ablation of aluminum thin layers with ultrashort-pulsed laser radiation

  • Tina ViertelEmail author
  • Linda Pabst
  • Robby Ebert
  • Horst Exner
Article
  • 84 Downloads

Abstract

In recent years, several applications for laser ablation of thin metal layers from the fused silica substrate side have been studied. The rear-side ablation is a highly effective ablation method for thin layer structuring and reveals a high structuring quality. Therefore, the present work dealt with the selective rear-side ablation of thin aluminum layers (10–50 nm) on fused silica with ultrashort-pulsed laser radiation (λ = 1028 nm, \( \tau_{\text{H}} \) = 0.2–10 ps and w0,86 = 15.2 µm). The influences of pulse duration and layer thickness on the ablation thresholds as well as the incubation coefficients were determined. For layer thicknesses of 30 and 50 nm, a decrease of the ablation threshold with increasing pulse duration was determined. Whereas, the ablation threshold remained constant for layer thicknesses of 10 and 20 nm. Different morphologies were observed depending on the process parameters. The rear-side ablation of aluminum proceeded over the melting phase and no lift-off process had taken place. In addition to experimental investigations, calculations were carried out to determine the theoretical threshold fluences. The theoretical values were compared to experimental data. With the help of these investigations, the quality of the structuring of aluminum layers can be improved.

Notes

Acknowledgements

The authors thank the European Social Fund for Germany (ESF) for funding the Project ULTRALAS No. 8221818. This project is co-financed by tax revenue on the basis of the budget adopted by the Saxon Landtag. Open image in new window

References

  1. 1.
    D.T. Read, A.A. Volinsky, in Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Realiability, Packaging, vol. I, ed. by E. Suhir, C.P. Wong, Y.C. Lee (Springer, Berlin, 2007), pp. 135-136Google Scholar
  2. 2.
    M. Eslamian, Nano-Micro Lett. 9, 3 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Olbrich, E. Punzel, P. Lickschat, S. Weißmantel, A. Horn, Phys. Proc. 83, 93–103 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    G.L. Schnable, Proc. IEEE 57, 1570–1580 (1969)CrossRefGoogle Scholar
  5. 5.
    H.C. Card, IEEE Trans. Electron. Dev. 23, 538–544 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    S. Zoppel, H. Huber, G.A. Reider, Appl. Phys. A 89, 161–163 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    L. Pabst, F. Ullmann, R. Ebert, H. Exner, Appl. Phys. A 125, 241 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 1–11 (2002)Google Scholar
  10. 10.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109–115 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    G. Heise, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Proceedings of Spie 7925 (2011)Google Scholar
  12. 12.
    A. Ott, Oberflächenmodifikation von Aluminiumlegierungen mit Laserstrahlung: Prozessverständnis und Schichtcharakterisierung (Herbert Utz Verlag, München, 2009), pp. 205–206Google Scholar
  13. 13.
    G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Appl. Phys. 45, 315303 (2012)Google Scholar
  14. 14.
    M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Appl. Phys. A 109, 409–420 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W. Wang, X. Mei, G. Jiang, K. Wang, C. Yang, Opt. Laser Technol. 44, 153–158 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Domke, S. Rapp, H. Huber, Phys. Proc. 39, 717–725 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H.P. Huber, M. Schmidt, Phys. Proc. 56, 1007–1014 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Rakic, Appl. Opt. 34, 4755–4767 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    F.M. Becker, H. Bossek et al., Formelsammlung bis zum Abitur (Duden Schulbuch, Berlin, 2006), pp. 74–78Google Scholar
  20. 20.
    D.W. Doerr, Femtosecond Laser Microprocessing of Aluminium Films and Quartz, Dissertation University of Nebraska–Licoln, 19-20, 22, 31 (2007)Google Scholar
  21. 21.
    P. Lickschat, Microstructuring of steel using picosecond and femtosecond laser pulses, master thesis University of Applied Sciences—Mittweida, 18 (2013)Google Scholar
  22. 22.
    H. Yamada, T. Sano, T. Nakayama, I. Miyamoto, Appl. Surf. Sci. 197–198, 411–415 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    T.C. Röder, J.R. Köhler, Appl. Phys. Lett. 100, 071603 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B. Hopp, C.S. Vass, T. Smausz, Appl. Surf. Sci. 253, 7922–7925 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, 6803–6810 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749–1761 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, J. Appl. Phys. 101, 043506 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    M.L. Naudeau, R.J. Law, T.S. Luk, T.R. Nelson, S.M. Cameron, Opt. Express 14, 6194–6200 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    F. Di Niso, C. Caudiusi, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugara, Opt. Express 22, 12200–12210 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J. Byskov-Nielsen, J.M. Savolainen, M.S. Christensen, Appl. Phys. A 101, 97–101 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    L. Gallais, E. Bergeret, B. Wang, M. Guerin, E. Benevent, Appl. Phys. A 115, 177–188 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    D. Scorticati, G.W. Römer, D.F. de Lange, B.H. n’t Veld, J. Nanophotonics 6, 1–11 (2012)CrossRefGoogle Scholar
  34. 34.
    B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, U. Hunziker, Phys. Proc. 12, 164–171 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Appl. Phys. A 71, 657–665 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275–287 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    M. Weikert, Oberflächenstrukturieren mit ultrakurzen Laserpulsen, Dissertation, Universität Stuttgart (2005) 29Google Scholar
  38. 38.
    T. Viertel, L. Pabst, R. Ebert, H. Exner, 10. Mittweidaer Lasertagung Scientific Reports Nr. 2, 131–136 (2017)Google Scholar
  39. 39.
    R.L. Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322–331 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    I. Miyamotot, K. Cvecek, Y. Okamoto, M. Schmidt, Phys. Proc. 5, 483–493 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    I.M. Abdulagatov, S.N. Emirov, T.A. Tsomaeva, KhA Gairbekov, S.Ya. Askerov, N.A. Magomedova, J. Phys. Chem. Solids 61, 779–787 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laserinstitute Hochschule MittweidaMittweidaGermany

Personalised recommendations