Applied Physics A

, 125:734 | Cite as

Dynamics of nanosecond-laser-induced melting of tin in vacuum, air, and water

  • Sergey V. StarinskiyEmail author
  • Alexey A. Rodionov
  • Yuri G. Shukhov
  • Evgeniy A. Maximovskiy
  • Alexander V. Bulgakov


Tin with its low melting point and vapor pressure is a good model material to investigate laser ablation mechanisms under various ambient conditions. Here we measured the nanosecond-laser-induced damage thresholds of tin in vacuum, air, and water. The threshold fluence is found to be ~ 0.1 J/cm2 regardless of the environment unlike more refractory metals when threshold values in water are considerably higher than those in air. Analysis of the morphology and chemical composition of the irradiated surface as well as numerical simulations of tin laser heating demonstrate that the observed surface modification is due to melting but not oxidation. For the case of water environment, the conductive heat transfer to water is found to play only a minor role in tin heating and melting. The simulations show also that the formation of a water vapor layer near the tin surface occurs at a considerably higher fluence, above 0.15 J/cm2, and thus the surface damage is not affected by scattering of the incident laser light by the vapor–liquid interface, typical for more refractory metals. Peculiarities of laser ablation of low-melt materials in liquids and nanoparticle formation are discussed.



This work was supported by the Russian Foundation for Basic Research within the projects No. 18-38-00057 (experimental studies) and No. 18-08-01383 (modeling). The SEM measurements were carried out under state contract with IT SB RAS. AVB also acknowledges financial support from the ERDF and the state budget of the Czech Republic (project BIATRI: No. CZ.02.1.01/0.0/0.0/15_003/0000445).


  1. 1.
    C. Streich, S. Koenen, M. Lelle, K. Peneva, S. Barcikowski, Appl. Surf. Sci. 348, 92 (2015)CrossRefGoogle Scholar
  2. 2.
    D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)CrossRefGoogle Scholar
  3. 3.
    P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Surf. Sci. 252, 4373 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    I. Lee, S. W. Han, and K. Kim, Chem. Commun. 1782 (2001)Google Scholar
  5. 5.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)CrossRefGoogle Scholar
  6. 6.
    K. Liu, J. Chen, H. Qu, Y. Dong, Y. Gao, J. Liu, X. Liu, Y. Zou, H. Zeng, Appl. Phys. Lett. 113 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    R. Streubel, S. Barcikowski, B. Gökce, Opt. Lett. 41, 1486 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski, ChemPhysChem 18, 1012 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Lau Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, G.A. Shafeev, Appl. Phys. A 89, 373 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, G.A. Shafeev, Appl. Surf. Sci. 255, 5346 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    C. Rehbock, J. Jakobi, L. Gamrad, S. van der Meer, D. Tiedemann, U. Taylor, W. Kues, D. Rath, S. Barcikowski, Beilstein J. Nanotechnol. 5, 1523 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Grade, J. Eberhard, J. Jakobi, A. Winkel, M. Stiesch, S. Barcikowski, Gold Bull. 47, 83 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Anton, P. Kreutzer, Phys. Rev. B - Condens. Matter Mater. Phys. 61, 16077 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    P. Wagener, I. Shyjumon, A. Menzel, A. Plech, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3068 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Dell’Aglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015)CrossRefGoogle Scholar
  16. 16.
    S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Appl. Surf. Sci. 396, 1765 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Bulgakov, A.B. Evtushenko, Y.G. Shukhov, I. Ozerov, W. Marine, Quantum Electron. 40, 1021 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    N.M. Bulgakova, A.B. Evtushenko, Y.G. Shukhov, S.I. Kudryashov, A.V. Bulgakov, Appl. Surf. Sci. 257, 10876 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    N.M. Bulgakova, A.V. Bulgakov, L.P. Babich, Appl. Phys. A 79, 1323 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    V.P. Scripov, Metastable liquids (Wiley, Hoboken, 1973)Google Scholar
  22. 22.
    Y.D. Varlamov, Y.P. Meshcheryakov, M.P. Predtechenskii, S.I. Lezhnin, S.N. Ul’yankin, J. Appl. Mech. Tech. Phys. 48, 213 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    P.V. Skripov, A.P. Skripov, Int. J. Thermophys. 31, 816 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    V.E. Zinov'ev, Handbook of thermophysical properties of metals at high temperature (Nova Science Publ, New York, 1996)Google Scholar
  25. 25.
    H. Jiang, K.S. Moon, H. Dong, F. Hua, C.P. Wong, Chem. Phys. Lett. 429, 492 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A.I. Golovashkin, G.P. Motulevich, Sov. Phys. JETP 19, 310 (1964)Google Scholar
  27. 27.
    O. Benavides, L. De La Cruz May, A. Flores Gil, J.A. Lugo Jimenez, Opt. Lasers Eng. 68, 83 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Appl. Surf. Sci. 396, 1736 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Duncan, Rev. Sci. Instrum. 83, 041101 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M. Jadraque, A.B. Evtushenko, D. Ávila-Brande, M. López-Arias, V. Loriot, Y.G. Shukhov, L.S. Kibis, A.V. Bulgakov, M. Martín, J. Phys. Chem. C 117, 5416 (2013)CrossRefGoogle Scholar
  32. 32.
    B. Kumar, R.K. Thareja, J. Appl. Phys. 108, 064906 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    B. Kumar, D. Yadav, R.K. Thareja, J. Appl. Phys. 110, 074903 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    L. Torrisi, D. Margarone, Plasma Sources Sci. Technol. 15, 635 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    G.W. Yang, Prog. Mater Sci. 52, 648 (2007)CrossRefGoogle Scholar
  36. 36.
    M.J. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, X. Hou, Thin Solid Films 518, 5188 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    G. Yang, Laser ablation in liquids: principles and applications in the preparation of nanomaterials (Jenny Stanford Publishing, New York, 2012)CrossRefGoogle Scholar
  39. 39.
    S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Quantum Electron. 47, 343 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S.S. Kutateladze Institute of Thermophysics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  4. 4.HiLASE Centre, Institute of PhysicsCzech Academy of SciencesDolní BřežanyCzech Republic

Personalised recommendations