Effects of preparation conditions on the morphology and photoelectrochemical performances of electrospun WO3 nanofibers
- 96 Downloads
Abstract
The effects of calcination temperature, precursor content, holding time and heating rate on the morphology of WO3 nanofibers (NFs) prepared by electrospinning technology have been investigated systematically. The X-ray diffraction (XRD) patterns using Rietveld method indicated that average crystalline sizes of nanoparticles of WO3 NFs increase with increasing calcination temperature. Also, the crystallinity of the nanofibers increases with the rise of calcination temperature. The suitable precursor contents and holding time facilitate the formation of continuous and uniform NFs. The samples prepared by different heating rates showed that the WO3 NFs fabricated with heating rate of 5 °C/min possess the smallest and uniform nanoparticle sizes. The X-ray diffraction (XRD) patterns using Rietveld method exhibited that different heating rate had no significant influence on the crystallinity of WO3 NFs. Additionally, the experimental results of photocurrent responses and electrochemical impedance indicate that the WO3 NFs prepared by different heating rate have different photoelectrochemical performances.
Notes
Acknowledgments
This work was supported by the projects from National Natural Science Foundation of China (51202090 and 51302106).
References
- 1.J. Liu, Y. Li, S. Arumugam, J. Tudor, S. Beeby, Mater. Today: Proc. 5, 13846–13854 (2018)Google Scholar
- 2.C. Yu, Z. Tong, S. Li, Y. Yin, Mater. Lett. 240, 161–164 (2019)Google Scholar
- 3.J. Choi, W. Kim, S. Hong, Nanoscale. 10, 4370–4376 (2018)Google Scholar
- 4.M. T. Zahoor, M. Ahmad, K. Maaz, S. Karim, K. Waheed, G. Ali, S. Hussain, S. Hussain, A. Nisar, Mater. Chem. Phys. 221, 250–257 (2019)Google Scholar
- 5.S. Yu, V. Ng, F. Wang, Z. Xiao, C. Li, L. Kong, W. Que, K. Zhou, J. Mater. Chem. A. 6, 9332–9367 (2018)Google Scholar
- 6.E. Limousin, N. Ballard, J. Asua, Prog. Org. Coat. 129, 69–76 (2019)Google Scholar
- 7.H. Jung, T. Pham, E.W. Shin, J. Alloys Compd. 788, 1084–1092 (2019)Google Scholar
- 8.X. Yang, Y. Liu, J. Li, Y. Zhang, Mater. Lett. 241, 76–79 (2019)Google Scholar
- 9.E. Mirzadeh, K. Akhbari, CrystEngComm 18, 7410–7424 (2016)Google Scholar
- 10.H. Wu, Y. Higaki, A. Takahara, Prog. Polym. Sci. 77, 95–117 (2018)Google Scholar
- 11.F. Dvorak, R. Zazpe, M. Krbal, H. Sopha, J. Prikryl, S. Ng, L. Hromadko, F. Bures, J. Macak, Appl. Mater. Today 14, 1–20 (2019)Google Scholar
- 12.W. Sukbua, J. Muangban, N. Triroj, P. Jaroenapibal, Proc. Eng. 47, 370 (2012)Google Scholar
- 13.K. Kumar, A. Priya, A. Arun, S. Hait, Anirban Chowdhury. Mater. Chem. Phys. 226, 106–112 (2019)Google Scholar
- 14.Y. Wu, Z. Liu, Y. Li, J.O. Chen, X. Zhu, Mater. Lett. 240, 47–50 (2019)Google Scholar
- 15.P. Dumrongrojthanath, A. Phuruangrat, S. Thipkonglas, B. Kuntalue, S. Thongtem, T. Thongtem, Superlattices Microstruct. 120, 241–249 (2018)ADSGoogle Scholar
- 16.O.W. Kennedy, M.L. Coke, E.R. White, M.S.P. Shaffer, P.A. Warburton, Mater. Lett. 212, 51–53 (2018)Google Scholar
- 17.Y. Qu, P. Zhang, J. Liu, L. Zhao, X. Song, L. Gao, Mater. Chem. Phys. 226, 88–94 (2019)Google Scholar
- 18.K.T. Alali, J. Liu, Q. Liu, R. Li, Z. Li, P. Liu, K. Aljebawi, J. Wang, RSC Adv. 7, 11428–11438 (2017)Google Scholar
- 19.S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, H. Kim, Mater. Sci. Eng. B 217, 36 (2017)Google Scholar
- 20.K.T. Alali, J. Liu, Q. Liu, R. Li, K. Aljebawi, J. Wang, Chem. Sel. 4, 5437–5458 (2019)Google Scholar
- 21.K.T. Alali, T. Liu, J. Liu, Q. Liu, Z. Li, H. Zhang, K. Aljebawi, J. Wang, RSC Adv. 6, 101626–101637 (2016)Google Scholar
- 22.K.T. Alali, T. Liu, J. Liu, Q. Liu, M. Fertassi, Z. Li, J. Wang, J. Alloys Compd. 702, 20–30 (2017)Google Scholar
- 23.K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Sens. Actuators B 252, 511–522 (2017)Google Scholar
- 24.Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Renew. Sust. Energ. Rev. 81, 1825–1858 (2018)Google Scholar
- 25.J.V. Patil, S.S. Mali, A.S. Kamble, C.K. Hong, J.H. Kim, P.S. Patil, Appl. Surf. Sci. 423, 641–674 (2017)ADSGoogle Scholar
- 26.S.W. Choi, J.Y. Park, S.S. Kim, Chem. Eng. J. 172, 550–556 (2011)Google Scholar
- 27.H. Albetran, I.M. Low, Appl. Phys. A 122, 1044 (2016)ADSGoogle Scholar
- 28.J.Y. Park, K. Asokan, S. Choi, S.S. Kim, Sens. Actuators B 152, 254–260 (2011)Google Scholar
- 29.L.H. Jin, Y. Bai, C.S. Li, Y. Wang, J.Q. Feng, L. Lei, G.Y. Zhao, P.X. Zhang, Appl. Surf. Sci. 440, 725729 (2018)Google Scholar
- 30.K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Inorg. Chem. Front. 4, 1219–1230 (2017)Google Scholar
- 31.Z.M. Tahir, A. Mashkoor, M. Khan, K. Shafqat, W. Khalid, A. Ghafar, Mater. Chem. Phys. 221, 250–257 (2019)Google Scholar
- 32.J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Mater. Chem. A 6, 3350 (2018)Google Scholar
- 33.H. Elbohy, K.M. Reza, S. Abdulkarim, Q. Qiao, Energy Fuels 2, 403 (2018)Google Scholar
- 34.K.T. Alali, J. Liu, K. Aljebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, J. Wang, J. Alloys Compd. 793, 31–41 (2019)Google Scholar
- 35.J. Zheng, Z. Haider, T. Van, A. Pawar, M. Kang, C. Kim, Y. Kang, CrystEngComm 17, 6070 (2015)Google Scholar
- 36.P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, Environ. Sci. Nano. 4, 539–557 (2017)Google Scholar
- 37.M. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Appl. Catal. B 186, 157–165 (2016)Google Scholar
- 38.G. Hai, J. Huang, L. Cao, Y. Jie, J. Li, X. Wang, G. Zhang, J. Alloys Compd. 690, 239–248 (2017)Google Scholar
- 39.Y. Tian, G. Hua, W. Xu, N. Li, M. Fang, L. Zhang, J. Alloys Compd. 509, 724–730 (2011)Google Scholar
- 40.C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, Y. Zhou, A.C.S. Appl, Mater. Interfaces. 7, 25716–25724 (2015)Google Scholar
- 41.R. Shi, Y. Zhang, X. Wang, Q. Ma, A. Zhang, P. Yang, Mater. Chem. Phys. 207, 114–122 (2018)Google Scholar
- 42.A. Rabiei, B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang, J. Ong, Surf. Coat. Technol. 200, 6111–6116 (2006)Google Scholar
- 43.Y.Komen Rothschild, J. Appl. Phys. 95, 6374–6380 (2004)ADSGoogle Scholar