Advertisement

Applied Physics A

, 125:724 | Cite as

Effects of preparation conditions on the morphology and photoelectrochemical performances of electrospun WO3 nanofibers

  • Yongping Cui
  • Yaru Shang
  • Ruixia ShiEmail author
  • Quande Che
  • Yingzi Wang
  • Ping YangEmail author
Article
  • 96 Downloads

Abstract

The effects of calcination temperature, precursor content, holding time and heating rate on the morphology of WO3 nanofibers (NFs) prepared by electrospinning technology have been investigated systematically. The X-ray diffraction (XRD) patterns using Rietveld method indicated that average crystalline sizes of nanoparticles of WO3 NFs increase with increasing calcination temperature. Also, the crystallinity of the nanofibers increases with the rise of calcination temperature. The suitable precursor contents and holding time facilitate the formation of continuous and uniform NFs. The samples prepared by different heating rates showed that the WO3 NFs fabricated with heating rate of 5 °C/min possess the smallest and uniform nanoparticle sizes. The X-ray diffraction (XRD) patterns using Rietveld method exhibited that different heating rate had no significant influence on the crystallinity of WO3 NFs. Additionally, the experimental results of photocurrent responses and electrochemical impedance indicate that the WO3 NFs prepared by different heating rate have different photoelectrochemical performances.

Notes

Acknowledgments

This work was supported by the projects from National Natural Science Foundation of China (51202090 and 51302106).

References

  1. 1.
    J. Liu, Y. Li, S. Arumugam, J. Tudor, S. Beeby, Mater. Today: Proc. 5, 13846–13854 (2018)Google Scholar
  2. 2.
    C. Yu, Z. Tong, S. Li, Y. Yin, Mater. Lett. 240, 161–164 (2019)Google Scholar
  3. 3.
    J. Choi, W. Kim, S. Hong, Nanoscale. 10, 4370–4376 (2018)Google Scholar
  4. 4.
    M. T. Zahoor, M. Ahmad, K. Maaz, S. Karim, K. Waheed, G. Ali, S. Hussain, S. Hussain, A. Nisar, Mater. Chem. Phys. 221, 250–257 (2019)Google Scholar
  5. 5.
    S. Yu, V. Ng, F. Wang, Z. Xiao, C. Li, L. Kong, W. Que, K. Zhou, J. Mater. Chem. A. 6, 9332–9367 (2018)Google Scholar
  6. 6.
    E. Limousin, N. Ballard, J. Asua, Prog. Org. Coat. 129, 69–76 (2019)Google Scholar
  7. 7.
    H. Jung, T. Pham, E.W. Shin, J. Alloys Compd. 788, 1084–1092 (2019)Google Scholar
  8. 8.
    X. Yang, Y. Liu, J. Li, Y. Zhang, Mater. Lett. 241, 76–79 (2019)Google Scholar
  9. 9.
    E. Mirzadeh, K. Akhbari, CrystEngComm 18, 7410–7424 (2016)Google Scholar
  10. 10.
    H. Wu, Y. Higaki, A. Takahara, Prog. Polym. Sci. 77, 95–117 (2018)Google Scholar
  11. 11.
    F. Dvorak, R. Zazpe, M. Krbal, H. Sopha, J. Prikryl, S. Ng, L. Hromadko, F. Bures, J. Macak, Appl. Mater. Today 14, 1–20 (2019)Google Scholar
  12. 12.
    W. Sukbua, J. Muangban, N. Triroj, P. Jaroenapibal, Proc. Eng. 47, 370 (2012)Google Scholar
  13. 13.
    K. Kumar, A. Priya, A. Arun, S. Hait, Anirban Chowdhury. Mater. Chem. Phys. 226, 106–112 (2019)Google Scholar
  14. 14.
    Y. Wu, Z. Liu, Y. Li, J.O. Chen, X. Zhu, Mater. Lett. 240, 47–50 (2019)Google Scholar
  15. 15.
    P. Dumrongrojthanath, A. Phuruangrat, S. Thipkonglas, B. Kuntalue, S. Thongtem, T. Thongtem, Superlattices Microstruct. 120, 241–249 (2018)ADSGoogle Scholar
  16. 16.
    O.W. Kennedy, M.L. Coke, E.R. White, M.S.P. Shaffer, P.A. Warburton, Mater. Lett. 212, 51–53 (2018)Google Scholar
  17. 17.
    Y. Qu, P. Zhang, J. Liu, L. Zhao, X. Song, L. Gao, Mater. Chem. Phys. 226, 88–94 (2019)Google Scholar
  18. 18.
    K.T. Alali, J. Liu, Q. Liu, R. Li, Z. Li, P. Liu, K. Aljebawi, J. Wang, RSC Adv. 7, 11428–11438 (2017)Google Scholar
  19. 19.
    S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, H. Kim, Mater. Sci. Eng. B 217, 36 (2017)Google Scholar
  20. 20.
    K.T. Alali, J. Liu, Q. Liu, R. Li, K. Aljebawi, J. Wang, Chem. Sel. 4, 5437–5458 (2019)Google Scholar
  21. 21.
    K.T. Alali, T. Liu, J. Liu, Q. Liu, Z. Li, H. Zhang, K. Aljebawi, J. Wang, RSC Adv. 6, 101626–101637 (2016)Google Scholar
  22. 22.
    K.T. Alali, T. Liu, J. Liu, Q. Liu, M. Fertassi, Z. Li, J. Wang, J. Alloys Compd. 702, 20–30 (2017)Google Scholar
  23. 23.
    K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Sens. Actuators B 252, 511–522 (2017)Google Scholar
  24. 24.
    Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Renew. Sust. Energ. Rev. 81, 1825–1858 (2018)Google Scholar
  25. 25.
    J.V. Patil, S.S. Mali, A.S. Kamble, C.K. Hong, J.H. Kim, P.S. Patil, Appl. Surf. Sci. 423, 641–674 (2017)ADSGoogle Scholar
  26. 26.
    S.W. Choi, J.Y. Park, S.S. Kim, Chem. Eng. J. 172, 550–556 (2011)Google Scholar
  27. 27.
    H. Albetran, I.M. Low, Appl. Phys. A 122, 1044 (2016)ADSGoogle Scholar
  28. 28.
    J.Y. Park, K. Asokan, S. Choi, S.S. Kim, Sens. Actuators B 152, 254–260 (2011)Google Scholar
  29. 29.
    L.H. Jin, Y. Bai, C.S. Li, Y. Wang, J.Q. Feng, L. Lei, G.Y. Zhao, P.X. Zhang, Appl. Surf. Sci. 440, 725729 (2018)Google Scholar
  30. 30.
    K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Inorg. Chem. Front. 4, 1219–1230 (2017)Google Scholar
  31. 31.
    Z.M. Tahir, A. Mashkoor, M. Khan, K. Shafqat, W. Khalid, A. Ghafar, Mater. Chem. Phys. 221, 250–257 (2019)Google Scholar
  32. 32.
    J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Mater. Chem. A 6, 3350 (2018)Google Scholar
  33. 33.
    H. Elbohy, K.M. Reza, S. Abdulkarim, Q. Qiao, Energy Fuels 2, 403 (2018)Google Scholar
  34. 34.
    K.T. Alali, J. Liu, K. Aljebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, J. Wang, J. Alloys Compd. 793, 31–41 (2019)Google Scholar
  35. 35.
    J. Zheng, Z. Haider, T. Van, A. Pawar, M. Kang, C. Kim, Y. Kang, CrystEngComm 17, 6070 (2015)Google Scholar
  36. 36.
    P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, Environ. Sci. Nano. 4, 539–557 (2017)Google Scholar
  37. 37.
    M. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Appl. Catal. B 186, 157–165 (2016)Google Scholar
  38. 38.
    G. Hai, J. Huang, L. Cao, Y. Jie, J. Li, X. Wang, G. Zhang, J. Alloys Compd. 690, 239–248 (2017)Google Scholar
  39. 39.
    Y. Tian, G. Hua, W. Xu, N. Li, M. Fang, L. Zhang, J. Alloys Compd. 509, 724–730 (2011)Google Scholar
  40. 40.
    C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, Y. Zhou, A.C.S. Appl, Mater. Interfaces. 7, 25716–25724 (2015)Google Scholar
  41. 41.
    R. Shi, Y. Zhang, X. Wang, Q. Ma, A. Zhang, P. Yang, Mater. Chem. Phys. 207, 114–122 (2018)Google Scholar
  42. 42.
    A. Rabiei, B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang, J. Ong, Surf. Coat. Technol. 200, 6111–6116 (2006)Google Scholar
  43. 43.
    Y.Komen Rothschild, J. Appl. Phys. 95, 6374–6380 (2004)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations