Applied Physics A

, 125:727 | Cite as

Evaluation of photon attenuation and optical characterizations of bismuth lead borate glasses modified by TiO2

  • Y. S. RammahEmail author
  • F. I. El-Agawany
  • I. A. El-Mesady


A study of photon attenuation and optical properties was performed for (20Bi2O3–60B2O3–(20-y)PbO–yTiO2), where y = 0.0, 1.0, 2.5, 5.0, 7.5, and 10.0 wt%) glassy system. UV–Vis absorption measurements for the glasses in the range of 90–1100 nm wavelengths have been recorded. Based on the absorption spectra, the band gap of optical energy for each glass sample has been evaluated using absorbance spectrum fitting (\(E_{\text{Optical}}^{\text{ASF}}\)) and derivative absorbance spectrum fitting (\(E_{\text{Optical}}^{\text{DASF}}\)) models and compared with those obtained by Tauc’s method. \(E_{\text{Optical}}^{\text{ASF}}\) varies from 2.405 to 2.008 eV, while \(E_{\text{Optical}}^{\text{DASF}}\) takes values from 3.000 to 2.914 eV. Indeed, different optical parameters such as refractive index, molar polarizability, molar refractivity, metallization criterion, dielectric constants, optical transmission, reflection loss, band gap of optical energy-based metallization criterion, and refractive index-based metallization criterion have been evaluated. Moreover, several shielding parameters such as mass attenuation coefficients, linear attenuation coefficient, half-value layer, tenth-value layer, mean free path, effective atomic numbers, and effective electron densities have been evaluated using the WinXCOM program in the energy range 0.010–15 MeV for the prepared glass system. At 1 MeV photon energy, the half value layer for the investigated glasses takes values from 2.03 to 2.15 cm. The results showed that the studied glasses can be applied as candidate for radiation shielding materials according to their coefficients of mass attenuation and HVL values, especially the composition with the highest value of PbO (20 wt%), which introduced good nuclear radiation shielding.



  1. 1.
    S. Cetinkaya Colak, I. Akyuz, F. Atay, On the dual role of ZnO in zinc-borate glasses. J. Non Cryst. Solids 432, 406–412 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    M.I. Sayyed, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non Cryst. Solids 507, 30–37 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    I.I. Kindrat, B.V. Padlyak, A. Drzewiecki, Intrinsic luminescence of un-doped borate glasses. J. Lumin. 187, 546–554 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Stehle, C. Vira, D. Hogan, S. Feller, M. Affatigato, Optical and physical properties of bismuth borate glasses related to structure. Phys. Chem. Glasses 39, 83–86 (1998)Google Scholar
  5. 5.
    M. Sathish, B. Eraiah, Synthesis, characterization and optical properties of niobium doped silver-lead-borate glasses. Int. J. Eng. Res. Appl. 2, 1264–1270 (2012)Google Scholar
  6. 6.
    Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    B. Sailaja, R.J. Stella, G.T. Rao, B.J. Raja, V.P. Manjari, R.V.S.S.N. Ravikumar, Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass. J. Mol. Struct. 1096, 129–135 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    N.S. Prabhu, V. Hegde, M.I. Sayyed, O. Agar, S.D. Kamath, Investigations on structural and radiation shielding properties of Er3+ doped zinc bismuth borate glasses. Mater. Chem. Phys. 230, 267–276 (2019)CrossRefGoogle Scholar
  9. 9.
    M.R. Ahmed, B. Ashok, S.K. Ahmmad, A. Hameed, M.N. Chary, Md Shareefuddin, Infrared and Raman spectroscopic studies of Mn2+ ions doped in strontium alumino borate glasses: describes the role of Al2O3. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 210, 308–314 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    H. Alavian, H. Tavakoli-Anbaran, Study on gamma shielding polymer composites reinforced with different sizes and proportions of tungsten particles using MCNP code. Prog. Nucl. Energy 115, 91–98 (2019)CrossRefGoogle Scholar
  11. 11.
    Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124, 832 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses. J. Non Cryst. Solids 509, 99–105 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    P. Yasaka, N. Pattnaboonmee, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 68, 4–9 (2014)CrossRefGoogle Scholar
  14. 14.
    M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3–Bi2O3–PbO–TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    L. Gerward, N. Guilbert, K.B. Jensen, H. Lerving, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    N.A. El-Alaily, E.M. Abou Hussein, F.M. Ezz Eldin, Gamma irradiation and heat treatment effects on barium borosilicate glasses doped titanium oxide. J Inorg. Organomet. Polym. Mater. 28, 2662 (2018)CrossRefGoogle Scholar
  17. 17.
    L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2xSb2O3 glasses. J. Non. Cryst. Solids 355, 1597–1601 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72–77 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.H. Elbashar, H.A. Abd El-Ghany, Optical spectroscopic analysis of Fe2O3 doped CuO containing phosphate glass. Opt. Quant. Electron. 49, 310 (2017)CrossRefGoogle Scholar
  22. 22.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Moelwyn-Hughes, Physical chemistry (Pergamon, London, 1961)Google Scholar
  24. 24.
    S.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4, 25–35 (2012)Google Scholar
  25. 25.
    S.L. Meena, B. Bhatia, Polarizability and optical basicity of Er3+ ions doped zinc lithium bismuth borate glasses. J. Pure Appl. Ind. Phys. 6(10), 175–183 (2016)Google Scholar
  26. 26.
    B. Bhatia, S.L. Meena, V. Parihar, M. Poonia, Optical basicity and polarizability of Nd3+-doped bismuth borate glasses. New J. Glass Ceram. 5, 44–52 (2015)CrossRefGoogle Scholar
  27. 27.
    V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741–1745 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Results Phys. 8, 16–25 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S.H. Alazoumi, S. Abdul Aziz, R. El-Mallawany, U.S. Aliyu, H.M. Kamari, M.H.M. Zaid, K.A. Matori, A. Ushah, Optical properties of zinc lead tellurite glasses. Results Phys. 9, 1371–1376 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 161, 55–59 (2019)CrossRefGoogle Scholar
  31. 31.
    M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, ZnO–B2O3–PbO glasses: synthesis and radiation shielding characterization. Phys. B 548, 20–26 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3–PbO2–Bi2O3 glasses. Compos. B 172, 218–225 (2019)CrossRefGoogle Scholar
  33. 33.
    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    P. Fuochi, U. Corda, M. Lavalle, A. Kovács, M. Baranyai, A. Mejri, Kh Farah, Dosimetric properties of gamma and electron-irradiated commercial window glasses. Nukleonika 54, 39–43 (2009)Google Scholar
  36. 36.
    M.L. Taylor, R.L. Smith, F. Dossing, R.D. Franich, Robust calculation of effective atomic numbers: the auto-Zeff software. Med. Phys. 39, 1769–1778 (2012)CrossRefGoogle Scholar
  37. 37.
    F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)CrossRefGoogle Scholar
  38. 38.
    F. Akman, M.R. Kaçal, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005–1011 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Y. S. Rammah
    • 1
    Email author
  • F. I. El-Agawany
    • 1
  • I. A. El-Mesady
    • 1
  1. 1.Department of Physics, Faculty of ScienceMenoufia UniversityShebin El-KoomEgypt

Personalised recommendations