Applied Physics A

, 125:726 | Cite as

Growth, structure, and spectroscopic properties of an Yb3+, Ho3+ co-doped LuYAG single crystal for 2.91 μm laser

  • Huili Zhang
  • Dunlu SunEmail author
  • Jianqiao Luo
  • Zhongqing Fang
  • Xuyao Zhao
  • Cong Quan
  • Lunzhen Hu
  • Zhiyuan Han
  • Maojie Cheng
  • Shaotang Yin


Yb3+ and Ho3+ co-doped Lu2.55Y0.45Al5O12 (Yb,Ho:LuYAG) crystal with a size of Φ 28 mm × 120 mm was successfully grown by the Czochralski method. The lattice parameters of the as-grown Yb,Ho:LuYAG crystal were obtained by Rietveld refinement with the XRD data. The result of X-ray rocking curve indicated that the grown crystal has a high crystalline quality. From strong absorption band near 935 nm and emission bands within 2700–3000 nm, we found that the Yb3+ ions can be acted as the sensitizer for the activator ions Ho3+. Furthermore, the lifetimes of the 5I6 and 5I7 levels of the Ho3+ ions were 68.25 μs and 7.58 ms, respectively. These results indicated that the Yb,Ho:LuYAG crystal is a promising gain material for 2.91 μm laser pumped by a 940 nm LD.



This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51872290, 51702322 and 51802307), the China Postdoctoral Science Foundation (Grant No. 2018M642547), the Natural Science Foundation of Anhui Provence (Grant No. 1908085QE176), the National Key Research and Development Program of China (Grant No. 2016YFB1102301), and the Open Foundation of Science and Technology on Solid-State Laser Laboratory.


  1. 1.
    H.T. Guo, L. Liu, Y.Q. Wang, C.Q. Hou, W.N. Li, M. Liu, K.S. Zou, B. Peng, Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge–Ga–S–CdI2 chalcohalide glasses. Opt. Express 17(17), 15350–15358 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    K. Liu, J. Liu, H.X. Shi, F.Z. Tan, P. Wang, High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 2.18 W average output power. Opt. Express 22(20), 24384–24391 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    A.D. Zweig, M. Frenz, V. Romano, H.P. Weber, A comparative study of laser tissue interaction at 2.94 μm and 1.06 μm. Appl. Phys. B 47, 259–265 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, W. Ertmer, 2.70 μm Cr, Er:YSGG laser with high output energy and FTIR-Q-switch. Opt. Commun. 125, 90–94 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    R.Q. Dou, Q.L. Zhang, D.L. Sun, J.Q. Luo, H.J. Yang, W.P. Liu, G.H. Sun, Growth, thermal, and spectroscopic properties of a 2.911 μm Yb, Ho:GdTaO4 laser crystal. Cryst. Eng. Comm. 16, 11007–11012 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Quan, D.L. Sun, J.Q. Luo, H.L. Zhang, Z.Q. Fang, X.Y. Zhao, L.Z. Hu, M.J. Cheng, Q.L. Zhang, S.T. Yin, 2.7 μm dual-wavelength laser performance of LD end-pumped Er:YAP crystal. Opt. Express 26(22), 28421–28428 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    J.K. Chen, D.L. Sun, J.Q. Luo, H.L. Zhang, R.Q. Dou, J.Z. Xiao, Q.L. Zhang, S.T. Yin, Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er, Pr:GYSGG crystal. Opt. Express 21(20), 23425–23432 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    W.S. Rabinovich, S.R. Bowman, B.J. Feldman, M.J. Winings, Tunable laser pumped 3 μm Ho:YAlO3 laser. IEEE J. Quantum. Electron. 27(4), 895–897 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    A. Diening, S. Kuck, Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet. J. Appl. Phys. 87, 4063–4068 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Z.Q. Fang, D.L. Sun, J.Q. Luo, H.L. Zhang, X.Y. Zhao, C. Quan, M.J. Cheng, Q.L. Zhang, S.T. Yin, Influence of Cr3+ concentration on the spectroscopy and laser performance of Cr, Er:YSGG crystal. Opt. Eng. 56(10), 10711 (2017)CrossRefGoogle Scholar
  11. 11.
    J.S. Liu, J.J. Liu, Y. Tang, Performance of a diode end-pumped Cr, Er:YSGG laser at 2.79 μm. Laser Phys. 18(10), 1124–1127 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C. Ziolek, H. Ernst, G.F. Will, H. Lubatschowski, H. Welling, High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser. Opt. Lett. 26(9), 599–601 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga, Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express 12, 5125–5130 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    P.X. Zhang, J.G. Yin, B.T. Zhang, L.H. Zhang, J.Q. Hong, J.L. He, Y. Hang, Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal. Opt. Lett. 39(13), 3942–3945 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Li, J.Z. Li, Z.Q. Chen, Y.H. Wu, L.D. Wu, G.J. Liu, C.H. Wang, G. Zhang, Growth and spectral properties of Yb3+/Ho3+ co-doped NaGd(MoO4)2 crystal. Mater. Express 5(6), 527–533 (2015)CrossRefGoogle Scholar
  16. 16.
    H.L. Zhang, D.L. Sun, J.Q. Luo, F. Peng, Z.Q. Fang, X.Y. Zhao, M.J. Cheng, Q.L. Zhang, Q. Guo, S.T. Yin, Growth, structure, and spectroscopic properties of a Cr3+, Tm3+, Ho3+, and Pr3+ co-doped LuYAG single crystal for 2.9 μm laser. Cryst Eng Comm 18, 5826–5831 (2016)CrossRefGoogle Scholar
  17. 17.
    A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report No. LAUR, (2004) p. 86.Google Scholar
  18. 18.
    S.J. Ding, Q.L. Zhang, J.Q. Luo, W.P. Liu, X.F. Wang, G.H. Sun, X.L. Li, D.L. Sun, Thermal, defects, mechanical and spectral properties of Nd-doped GdNbO4 laser crystal. Appl. Phys. A 123, 335 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    I. Sokolska, E. Henmann, S. Kuck, T. Lukasiewicz, Laser oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 crystals in the spectral range around 1.6 μm. Appl. Phys. B 71, 893–896 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    H.L. Zhang, D.L. Sun, J.Q. Luo, J.K. Chen, S.H. Cao, M.J. Cheng, Q.L. Zhang, S.T. Yin, Growth and spectroscopic properties of the 29 μm Tm, Ho:LuAG laser crystal. Acta Opt. Sinica 34(4), 0416006 (2014)CrossRefGoogle Scholar
  21. 21.
    A.C. Larson, R.B.V. Dreele, Los Alamos National laboratory report no. LAUR 86, 748 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.Science and Technology on Solid-State Laser LaboratoryBeijingPeople’s Republic of China
  3. 3.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations