Advertisement

Applied Physics A

, 125:736 | Cite as

Role of Zn dopant on superparamagnetic property of CoFe2O4 nanoparticles

  • P. Monisha
  • P. Priyadharshini
  • S. S. GomathiEmail author
  • M. Mahendran
  • K. Pushpanathan
Article
  • 86 Downloads

Abstract

A series of Co1−xZnxFe2O4 (x = 0, 0.25, 0.5, 0.75 and 1.0) ferrite nanoparticles were synthesized by the chemical precipitation method and annealed at 800 °C for 5 h to remove the strain. Synthesized samples were characterized by means of X-ray diffraction, ultra-violet spectrometer, fluorescence spectrometer, Fourier transform infrared spectrometer, scanning and transmission electron microscope, vibrating sample magnetometer, and electron paramagnetic resonance techniques. The average crystallite size was decreased from 16.2 to 5.6 nm with increasing Zn concentration. UV–Vis absorption spectra indicate that Zn dopant decreased the energy gap of CoFe2O4 magnetic nanoparticles from 3.06 to 3.15 eV. The presence of two main metal oxide bands in FTIR spectra around 456 cm−1 and 553 cm−1 confirmed the octahedral and tetrahedral sites of metal oxide bands. The fluorescence spectra of the synthesized samples show red emission at 681 nm. TEM analysis confirmed the structural transformation from nanorods to nanoparticles as the Zn content increases. The EDAX spectrum confirmed homogeneous mixing of Co, Zn, Fe, and O atoms. VSM analysis shows that increase in Zn concentration decreased the saturation magnetization from 34.2 to 1.6 emu g−1 and the coercivity from 0.111 to 0.015 T. Due to higher coercivity (0.1112 T), synthesized CoFe2O4 nanoparticles may be useful in the production of data storage devices, permanent magnet, parts of electronic circuits, and also in stealth technology.

Notes

Acknowledgements

One of the authors P. Monisha would like to thank Tamilnadu State Council for Science and Technology, Department of Higher Education, Government of Tamilnadu for its catalysis and financial support to carry out this work in a successful manner.

References

  1. 1.
    K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlatt. Microstruct. 60, 139–147 (2013)ADSGoogle Scholar
  2. 2.
    V.J. Angadi, A.V. Anupama, R. Kumar, H.K. Choudhary, S. Matteppanavar, H.M. Somashekarappa, B. Rudraswamy, B. Sahoo, Composition dependent structural and morphological modifications in nanocrystalline Mn–Zn ferrites induced by high energy γ-irradiation. Mater. Chem. Phys. 199, 313–321 (2017)Google Scholar
  3. 3.
    K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. 29, 203–212 (2019)Google Scholar
  4. 4.
    J. Feng, R. Xiong, L. Cheng, Y. Liu, Effect of chromium substitution on structural and magnetic properties of nickel–cobalt ferrite nanoparticles synthesized by co-precipitation method. J Supercond. Nov. Magn. 30, 3513–3521 (2017)Google Scholar
  5. 5.
    S.E.M. Ghahfarokhi, M. Ahmadi, I. Kazeminezhad, Effects of Bi3+ substitution on structural, morphological, and magnetic properties of cobalt ferrite nanoparticles. J Supercond. Nov. Magn. 2019, 1–13 (2019)Google Scholar
  6. 6.
    P. Paramasivan, P. Venkatesh, A novel approach: hydrothermal method of fine stabilized superparamagnetics of cobalt ferrite (CoFe2O4) nanoparticles. J Supercond. Nov. Magn. 29, 2805–2811 (2016)Google Scholar
  7. 7.
    K.R. Babu, K.R. Rao, B.R. Babu, Cu2+ modified physical properties of cobalt–nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017)ADSGoogle Scholar
  8. 8.
    C. Vichery, M. Poggi, P. Bonville, T. Gacoin, I. Maurin, Post-synthesis annealing of coprecipitated CoFe2O4 nanoparticles in silica matrix. J. Magn. Magn. Mater. 465, 186–192 (2018)ADSGoogle Scholar
  9. 9.
    P. Acharya, R. Desai, V.K. Aswal, R.V. Upadhyay, Structure of Co–Zn ferrite ferrofluid: a small angle neutron scattering analysis. Pramana J. Physics 71, 1069–1074 (2008)ADSGoogle Scholar
  10. 10.
    R.S. Gaikwad, S.Y. Chae, R.S. Mane, S.H. Han, O.S. Joo, Cobalt ferrite nanocrystallites for sustainable hydrogen production application. Int. J. Electrochem. (2011).  https://doi.org/10.4061/2011/729141 CrossRefGoogle Scholar
  11. 11.
    M. Staruch, D. Hires, D. Violette, D. Navarathne, G.A. Sotzing, M. Jain, Structural and magnetic properties of CoFe2O4 and Co0.5Zn0.5Fe2O4 nanoparticles for the magnetoelectric composite films. Integr Ferroelectr. 131, 102–109 (2011)Google Scholar
  12. 12.
    M.V. Reddy, J. Praveen Paul, D. Das, Effect of zinc doping on magnetic and magnetoelastic properties of cobalt ferrite synthesized by autocombustion process. AIP Conf. Proc. 1536, 1015 (2013)ADSGoogle Scholar
  13. 13.
    A.R. Lamani, H.S. Jayanna, C.S. Naveen, M.P. Rajeeva, G.D. Prasanna, Microwave dielectric and magnetic properties of Co–Zn ferrites. IOP Conf. Ser. Mater. Sci. Eng. 73, 012124 (2015)Google Scholar
  14. 14.
    B. Suryanarayana, V. Raghavendra, K. Chandra Mouli, P. Raghupathireddy, Effect of zinc doped in cobalt ferrite nano particles prepared by chemical co-precipitation method. Chem. Sci. Trans. 5, 741–747 (2016)Google Scholar
  15. 15.
    S. Tapdiya, A.K. Shrivastava, Zinc substituted cobalt ferrite nanoparticles (Co1−xZnxFe2O4, with x = 0.0, 0.1, 0.2 and 0.3) were prepared via chemical co precipitation method. Int. J. Innov. Res. Sci. Eng. Technol. 5, 6681–6684 (2016)Google Scholar
  16. 16.
    V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124 (2016)ADSGoogle Scholar
  17. 17.
    S. Tapdiya, A.K. Shrivastava, Structural and magnetic investigations of ultrafine CoxMn1−xFe2O4, with x = 0.0, 0.1, 0.2 and 0.3 ferrite nanoparticles. J. Pure Appl. Ind. Phys. 7, 94–100 (2017)Google Scholar
  18. 18.
    N. Hosni, K. Zehani, T. Bartoli, L. Bessais, H. Maghraoui-Meherzi, Semi-hard magnetic properties of nanoparticles of cobalt ferrite synthesized by the co-precipitation process. J Alloys Compd. 694, 1295–1301 (2017)Google Scholar
  19. 19.
    H. Choi, S. Lee, T. Kouh, S.J. Kim, C.S. Kim, E. Hahn, Synthesis and characterization of Co–Zn ferrite nanoparticles for application to magnetic hyperthermia. J. Korean Phys. Soc 70, 89–92 (2017)ADSGoogle Scholar
  20. 20.
    T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanosc. Res. Lett. 12, 141 (2017)ADSGoogle Scholar
  21. 21.
    T. Shahjuee, S.M. Masoudpanah, S.M. Mirkazemi, Coprecipitation synthesis of CoFe2O4 nanoparticles for hyperthermia. J. Ultrafine Grained Nanostruct. Mater. 50, 105–110 (2017)Google Scholar
  22. 22.
    M.T. Jamil, J. Ahmad, S.H. Bukhari, T. Sultan, M.Y. Akhter, H. Ahmad, G. Murtaza, Effect on structural and optical properties of Zn-substituted cobalt ferrite CoFe2O4. J. Ovonic Res 13, 45–53 (2017)Google Scholar
  23. 23.
    K.P. Su, C.Y. Zhao, H.O. Wang, S. Huang, Z.W. Liu, D.X. Huo, Synthesis, structure and magnetic properties of CoFe2O4 ferrite nanoparticles. Mater. Res. Express. 5, 056102 (2018).  https://doi.org/10.1088/2053-1591/aabf7 CrossRefGoogle Scholar
  24. 24.
    M. Gharibshahian, M.S. Nourbakhsh, O. Mirzaee, Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn and Cd doped CoFe2O4 nanoparticles via Pechini sol–gel method. J. Sol. Gel. Sci. Technol. 85, 684–692 (2018)Google Scholar
  25. 25.
    H. Sharifi, Shokrollahi, nanostructural, magnetic and Mossbauer studies of nanosized Co1−xZnxFe2O4 synthesized by co-precipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012)ADSGoogle Scholar
  26. 26.
    G. Muscas, S. Jovanovi, M. Vukomanovi, M. Spreitzer, D. Peddis, Zn-doped cobalt ferrite: tuning the interactions by chemical composition. J. Alloys. Compd 796, 203–209 (2019)Google Scholar
  27. 27.
    S. Jovanovi, M. Spreitzer, M. Tramsek, Z. Trontelj, D. Suvorov, The effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. J. Phys. Chem. C 118, 13844–13856 (2014)Google Scholar
  28. 28.
    S. Ayyappan, G. Panneerselvam, M.P. Antony, J. Philip, High temperature stability of surfactant capped CoFe2O4 nanoparticles. Mater. Chem. Phys. 130, 1300–1306 (2011)Google Scholar
  29. 29.
    M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)ADSGoogle Scholar
  30. 30.
    M. Ponnar, C. Thangamani, P. Monisha, S.S. Gomathi, K. Pushpanathan, Influence of Ce doping on CuO nanoparticles synthesized by microwave irradiation method. Appl. Surf. Sci. 449, 132–143 (2018)ADSGoogle Scholar
  31. 31.
    M. Ben Ali, K. El Maalam, H. El Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, A. Benyoussef, Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater 398, 20–25 (2016)ADSGoogle Scholar
  32. 32.
    M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, co-precipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014)ADSGoogle Scholar
  33. 33.
    G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311, 46–50 (2007)ADSGoogle Scholar
  34. 34.
    M.A. Noor Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulk, N. Abdullah, W.N.A. Rahman, M. Abdullah, M. Manap, Magnetic properties of mechanically alloyed cobalt-zinc ferrite nanoparticles. J. Supercond. Nov. Magn 27, 2293–2298 (2014)Google Scholar
  35. 35.
    J.C. Fariñas, R. Moreno, A. Pérez, M.A. García, M. García-Hernández, M.D. Salvador, A. Borrell, Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite. J. Eur. Ceram. Soc. 38, 2360–2368 (2018)Google Scholar
  36. 36.
    E. Girgis, M.M. Wahsh, A.G. Othman, L. Bandhu, K.V. Rao, Synthesis, magnetic and optical properties of core/shell Co1−xZnxFe2O4/SiO2 nanoparticles. Nanosc. Res. Lett. 6, 460–467 (2011)ADSGoogle Scholar
  37. 37.
    R. SatoTurtelli, G.V. Duong, W. Nunes, R. Grössinger, M. Knobel, Magnetic properties of nanocrystalline CoFe2O4 synthesized by modified citrate–gel method. J. Magn. Magn. Mater. 320, e339–e342 (2008)Google Scholar
  38. 38.
    Y. Yang, J. Shao, F. Wang, X. Liu, C. Jin, Substituted cobalt nano-ferrites, CoMxFe2−xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x≤ 1.0) as heterogeneous catalysts for modified Fenton׳s reaction. Ceram. Int. 40, 11845–11855 (2014)Google Scholar
  39. 39.
    Y. Zhang, J. Ma, J. Lu, D. Wen, The role of Eu2O3 and CeO2 on the phase formation, infrared emission and magnetic properties of Co0.6Zn0.4Fe2O4 ceramics by a solvothermal method. Ceram. Int. 40, 4437–4443 (2014)Google Scholar
  40. 40.
    Z. Ding, W. Wang, S. Wu, J.P. Liu, Synthesis and characterization of Co–Zn ferrite nanoparticles by hydrothermal method: a comparative study. IEEE Trans. Magn. 51, 2004104 (2015)Google Scholar
  41. 41.
    T. Tatarchuk, M. Bououdina, J. Judith Vijaya, L. John Kennedy, Spinel Ferrite Nanoparticles: Synthesis, Crystal Structure, Properties, and Perspective Applications (Springer, Basel, 2017), pp. 305–325Google Scholar
  42. 42.
    K. Omri, O.M. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int 43, 6585–6591 (2017)Google Scholar
  43. 43.
    A. Ali, H. Zafar, M. Zia, I. ulHaq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016)Google Scholar
  44. 44.
    A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)ADSzbMATHGoogle Scholar
  45. 45.
    A.V. Humbe, S.D. Birajdar, J.M. Bhandari, N.N. Waghule, V.R. Bhagwat, K.M. Jadhav, Polyethylene glycol coated CoFe2O4 nanoparticles: a potential spinel ferrite for biomedical applications. AIP Conf. Proc. 1665, 050138 (2015)Google Scholar
  46. 46.
    N.M. Deraz, O.H. Abd-Elkader, Structural, morphological and magnetic properties of Zn0.5Mg0.5Fe2O4 as anticorrosion pigment. Int. J. Electrochem. Sci. 10, 7138–7146 (2015)Google Scholar
  47. 47.
    J.P. Donoso, C.J. Magon, J. Lima, O.R. Nascimento, Electron paramagnetic resonance study of copper–ethylenediamine complex ion intercalated in bentonite. J. Phys. Chem. C 117, 24042–24055 (2013)Google Scholar
  48. 48.
    A.K.M.A. Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1−xZnxFe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007)ADSGoogle Scholar
  49. 49.
    L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. ZeitschriftfürPhysik 5, 17–26 (1921)ADSGoogle Scholar
  50. 50.
    L. Kumar, P. Kumar, M. Kar, Cation distribution by Rietveld technique and magnetocrystalline anisotropy of Zn substituted nanocrystalline cobalt ferrite. J. Alloys Compd. 551, 72–81 (2013)Google Scholar
  51. 51.
    K. Kombaiah, J. Judith Vijaya, L. John Kennedy, M. Bououdina, R. Jothi Ramalingam, H.A. Al-Lohedan, Comparative investigation on the structural, morphological, optical, and magnetic properties of CoFe2O4 nanoparticles. Ceram. Int. 43, 7682–7689 (2017)Google Scholar
  52. 52.
    R.K. Singh, A. Narayan, K. Prasad, R.S. Yadav, A.C. Pandey, A.K. Singh, L. Verma, R.K. Verma, Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. J. Therm. Anal. Calorim. 110, 573–580 (2012)Google Scholar
  53. 53.
    A. Manikandan, L. John Kennedy, M. Bououdina, J. Judith Vijaya, Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 349, 249–258 (2014)ADSGoogle Scholar
  54. 54.
    A. Manikandan, J. Judith Vijaya, L. John Kennedy, M. Bououdina, Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013)ADSGoogle Scholar
  55. 55.
    S. Simrjit, N. Khare, Effect of intrinsic strain on the optical bandgap and magnetic properties of single domain CoFe2O4 nanoparticles. Appl. Phys. A 124, 107 (2018)ADSGoogle Scholar
  56. 56.
    A.M. Wahba, M.B. Mohamed, N.G. Imam, Correlating structural, magnetic, and luminescence properties with the cation distribution of Co0.5Zn0.5+xFe2–xO4 nanoferrite. J. Magn. Magn. Mater 408, 51–59 (2016)ADSGoogle Scholar
  57. 57.
    E. Hema, A. Manikandan, P. Karthika, S.A. Antony, B.R. Venkatraman, A novel synthesis of Zn2+ doped CoFe2O4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn 28, 2539–2552 (2015)Google Scholar
  58. 58.
    R. Santhi, C. Shanthi, M. Sathya, K. Pushpanathan, Self-assembled flower-like microstructure in Zn1−xCdxO nanoparticles. Trans. Nonferrous Met. Soc. China 27, 2031–2042 (2017)Google Scholar
  59. 59.
    P. Leon, C. Reuquen, R. Garín, P. Segura, P. Vargas, P.A. Zapata, Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7, 49 (2017)Google Scholar
  60. 60.
    C.H. Vinuthna, D. Ravinder, R. MadhusudanRaju, Characterization of Co1−xZnxFe2O4 nano spinal ferrites prepared by citrate precursor method. Int. J. Eng. Res Appl. 3, 654–660 (2013)Google Scholar
  61. 61.
    V. Maruthapandian, S. Muralidharan, V. Saraswathy, Spinel NiFe2O4 based solid state embeddable reference electrode for corrosion monitoring of reinforced concrete structures. Constr. Build. Mater. 107, 28–37 (2016)Google Scholar
  62. 62.
    A. Hashhash, M. Kaiser, Influence of Ce-substitution on structural, magnetic and electrical properties of cobalt ferrite nanoparticles. J. Electron. Mater. 45, 462–472 (2016)ADSGoogle Scholar
  63. 63.
    T. George, A.T. Sunny, T. Varghese, Magnetic properties of cobalt ferrite nanoparticles synthesized by sol–gel method. IOP Conf. Ser. Mater. Sci. Eng. 73, 012050 (2015)Google Scholar
  64. 64.
    M.B. Mohameda, A.M. Wahbab, M. Yehiac, Structural and magnetic properties of CoFe2−xMoxO4 nanocrystalline ferrites. Mat. Sci. Eng. B 190, 52–58 (2014)Google Scholar
  65. 65.
    S.M. Ansari, B.B. Sinha, K.R. Pai, S.K. Bhat, Y.R. Ma, D. Sen, Y.D. Kolekar, C.V. Ramana, Controlled surface/interface structure and spin enabled superior properties and biocompatibility of cobalt ferrite nanoparticles. Appl. Surf. Sci. 459, 788–801 (2018)ADSGoogle Scholar
  66. 66.
    M. Amiri, M.S. Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019)Google Scholar
  67. 67.
    G.R. Kumar, K.V. Vijaya Kumar, Y.C. Venudhar, Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol–gel method. Mater. Sci. Appl. 3, 87–91 (2012)Google Scholar
  68. 68.
    S. Singhal, T. Namgyal, S. Bansal, K. Chandra, Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol–gel route. J. Electromagn. Anal. Appl. 2, 376–381 (2010)ADSGoogle Scholar
  69. 69.
    A.E. Berkowitz, W.J. Schuele, Magnetic properties of some ferrite micropowders. J. Appl. Phys. 30, S134 (1959)ADSGoogle Scholar
  70. 70.
    R.P. Pant, V. Kumar, S.K. Halder, S.K. Gupta, S. Singh, Investigations on nanocrystalline superparamagnetic particles of CoFe2O4. Int. J. Nanosci. 6, 515–519 (2007)Google Scholar
  71. 71.
    G.S. Shahane, K.V. Zipare, R.P. Pant, Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles for ferrofluid application. J. Magn. Hydrodyn. 49, 317–321 (2013)Google Scholar
  72. 72.
    R. Venkataraju, Paulsingh, FTIR and EPR studies of nickel substituted nanostructured Mn Zn ferrite. J. Nanosci. 815385, 5 (2014)Google Scholar
  73. 73.
    S.A. Gene, E. Saion, A.H. Shaari, M.A. Kamarudin, N.M. Al-Hada, A. Kharazmi, Structural, optical, and magnetic characterization of spinel zinc chromite nanocrystallines synthesised by thermal treatment method. J. Nanomater. 416765, 7 (2014)Google Scholar
  74. 74.
    R. Kesavamoorthi, C.R. Raja, Studies on the properties of manganese substituted nickel ferrite nanoparticles. J. Supercond. Nov. Magn. 29, 2729–2734 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Monisha
    • 1
  • P. Priyadharshini
    • 2
  • S. S. Gomathi
    • 1
    Email author
  • M. Mahendran
    • 3
  • K. Pushpanathan
    • 2
  1. 1.Department of PhysicsSri Sarada College for WomenSalemIndia
  2. 2.Nanomaterials Research Laboratory, Department of PhysicsGovernment Arts CollegeKarurIndia
  3. 3.Smart Materials Laboratory, Department of PhysicsThiagarajar College of EngineeringMaduraiIndia

Personalised recommendations