Applied Physics A

, 125:704 | Cite as

Substrate temperature dependent physical properties of SnS1−xSex thin films

  • K. Saritha
  • S. Rasool
  • K. T. Ramakrishna ReddyEmail author
  • A. M. Saad
  • M. S. Tivanov
  • S. E. Tikoto
  • O. V. Korolik
  • V. F. Gremenok


Recently, researchers showed great interest on SnS1−xSex alloy films because of their tunable physical properties that are suitable as an absorber layer in thin film solar cells. In the present work, SnS1−xSex thin films were deposited by thermal co-evaporation of SnS and Se at different substrate temperatures ranging from 200 to 350 °C. The influence of substrate temperature (Ts) on composition, structure, surface morphology, topography and optical properties of as-deposited films was investigated using appropriate techniques and the results are reported in detail. The EDS analysis of SnS1−xSex films showed that Sn/(S + Se) ratio was changed from 0.84 to 1.16 with increase of substrate temperature. All the films were polycrystalline in nature, exhibiting (111) plane as preferred orientation with orthorhombic crystal structure. From W–H analysis, the crystallite size and lattice strain in the films were evaluated, where the crystallite size varied in the range, 9–22 nm with substrate temperature. The layers showed a change in the shape of grains with the rise of substrate temperature, where the grain size has increased with Ts. The topographical results indicated an indirect relation between surface roughness and average grain size with change in substrate temperature. The band gap energy values of the films was decreased with increase of Ts and varied in the range, 1.59–1.46 eV. In addition, the photoconductivity measurements revealed that the as-deposited SnS1−xSex films had bimolecular type recombination (γ ~ 0.5) of photo-generated charge carriers.



The authors, Prof. K.T. Ramakrishna Reddy and Prof. M.S. Tivanov wish to acknowledge the Dept. of Science and Technology, Govt. of India (Grant no: DST/INT/BLR/P-30/2019) and the State Committee on Science and Technology of the Republic of Belarus. The authors of this work are grateful to Affiliate RDC “Belmicrosystems” JSC “INTEGRAL”—”INTEGRAL” Holding Managing Company for SEM studies.


  1. 1.
    A. Basak, A. Mondal, U.P. Singh, Impact of substrate temperature on the structural, optical and electrical properties of thermally evaporated SnS thin films. Mater. Sci. Semicond. Process. 56, 381 (2016)Google Scholar
  2. 2.
    Malkeshakumar Patel, Abhijit Ray, Junction and back contact properties of spray-deposited M/SnS/In2S3/SnO2:F/Glass (M = Cu, Graphite) devices: Considerations to improve photovoltaic performance. J. Electron. Mater. 44, 558 (2015)ADSGoogle Scholar
  3. 3.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications. Sol. Energy Mater. Sol. Cells 92, 1099 (2008)Google Scholar
  4. 4.
    K.S. Urmila, T.A. Namitha, J. Rajani, R.R. Philip, B. Pradeep, Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond. 37, 093002 (2016)ADSGoogle Scholar
  5. 5.
    E.B. Salgado, M.T.S. Nair, P.K. Nair, Thin films of n-type SnSe2 produced from chemically deposited p- type SnSe. Thin Solid Films 598, 149 (2016)ADSGoogle Scholar
  6. 6.
    N.E. Makori, I.A. Amatalo, P.M. Karimi, W.K. Njoroge, Optical and electrical properties of SnSe thin films for solar cell applications. Am. J. Condens. Matter Phys. 4, 87 (2014)Google Scholar
  7. 7.
    T.R. Rana, S.Y. Kim, J.H. Kim, Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell. Curr. Appl. Phys. 18, 663 (2018)ADSGoogle Scholar
  8. 8.
    Y. Takano, K. Oyaizu, Fabrication of SnS-MgSnO heterojunction solar cells using vacuum thermal evaporation and sol–gel method. Mater. Lett. 228, 414 (2018)Google Scholar
  9. 9.
    T.M. Razykov, G.S. Boltaev, A. Bosio, B. Ergashev, K.M. Kouchkarov, N.K. Mamarasulov, A.A. Mavlonov, A. Romeo, N. Romeo, O.M. Tursunkulov, R. Yuldoshov, Characterization of SnSe thin films fabricated by chemical molecular beam deposition for use in thin film solar cells. Sol. Energy 159, 834 (2018)ADSGoogle Scholar
  10. 10.
    P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014)Google Scholar
  11. 11.
    N.E. Makori, I.A. Amatalo, P.M. Karimi, W.K. Njoroge, Characterization of SnSe/CdO: Sn P–N junction for solar cell applications. Int. J. Energy Eng. 5, 1 (2015)Google Scholar
  12. 12.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510 (1961)ADSGoogle Scholar
  13. 13.
    Y. Wei, D. Zhuang, M. Zhao, W. Zhang, G. Ren, Y. Wu, R. Sun, Q. Gong, L. Zhang, S. Zhan, X. Peng, X. Lyu, Beyond 10% efficient CZTSSe thin film solar cells fabricated by a two-step CdS deposition process. Sol. Energy Mater. Sol. Cells 180, 19 (2018)Google Scholar
  14. 14.
    W. Albers, C. Haas, H. Ober, G.R. Schodder, J.D. Wasscher, Preparation and properties of mixed crystals SnS(1−x)Sex. J. Phys. Chem. Solids 23, 215 (1962)ADSGoogle Scholar
  15. 15.
    T.H. Patel, R. Vaidya, S.G. Patel, Anisotropic behaviour of semiconducting tin monosulphoselenide single crystals. Bull. Mater. Sci. 26, 569 (2003)Google Scholar
  16. 16.
    B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Materials properties of electrodeposited SnS0.5Se0.5 films and characterization of photoelectrochemical solar cells. Mater. Res. Bull. 38, 899 (2003)Google Scholar
  17. 17.
    H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, X. Chen, Y. Zhang, Novel SnSxSe1−x nanocrystals with tunable band gap: experimental and first principles calculations. J. Mater. Chem. 21, 12605 (2011)Google Scholar
  18. 18.
    T. Mahalingam, V. Danasekaran, G. Ravi, R. Chandramohan, A. Kathalingam, J.K. Rhee, Role of deposition potential on the optical properties of SnSSe thin;films. ECS Trans. 35, 1 (2011)Google Scholar
  19. 19.
    H.S. Im, Y. Myung, Y.J. Cho, C.H. Kim, H.S. Kim, S.H. Back, C.S. Jung, D.M. Jang, Y.R. Lim, J. Park, J.P. Ahn, Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. RSC Adv. 3, 10349 (2013)Google Scholar
  20. 20.
    V. Dhanasekaran, K. Sundaram, J. Jung, T. Mahalingam, Microstructural properties evaluation of SnSSe alloy films. J. Mater. Sci.: Mater. Electron., 26, 1641 (2015)Google Scholar
  21. 21.
    E. Barrios-Salgado, L.A. Rodriguez-Guadarrama, A.R. Garcia-Angelmo, J.C. Alvarez, M.T.S. Nair, P.K. Nair, Large cubic tin sulphide-tin selenide thin film stacks for energy conversion. Thin Solid Films 615, 415 (2016)ADSGoogle Scholar
  22. 22.
    H. Ju, M. Kim, D. Park, J. Kim, A strategy for low thermal conductivity and enhanced thermoelectric performance in SnSe: porous SnSe1−xSx nanosheets. Chem. Mater. 29, 3228 (2017)Google Scholar
  23. 23.
    T.T. Ly, G. Duvjir, T. Min, J. Byun, T. Kim, M.M. Saad, N.T.M. Hai, S. Cho, J. Lee, J. Kim, Atomistic study of the alloying behaviour of crystalline SnSe1−xSx. Phys. Chem. Chem. Phys. 19, 21648 (2017)Google Scholar
  24. 24.
    T.R. Asfandiyar, A. Wei, F.H. Li, Y. Sun, C.F. Pan, M.U. Wu, H. Farooq, F. Tang, B. Li, J.F. Li, Li, Thermoelectric SnS and SnS-SnSe solid solutions prepared mechanical alloying and spark plasma sintering: anisotropic thermoelectric properties. Sci. Rep. 7, 1 (2017)Google Scholar
  25. 25.
    E. Barrios-Salgado, L.A. Rodriguez-Guadarrama, M.L.R. Garcia, L.G. Martinez, M.T.S. Nair, P.K. Nair, Thin film solar cells of cubic structured SnS-SnSe. Phys. Status Solidi A 1700036, 1 (2017)Google Scholar
  26. 26.
    H. Kafashan, M. Azizieh, Z. Balak, Electrochemical synthesis of nanostructured Se-doped SnS: effect of Se-dopant on surface characterizations. Appl. Surf. Sci. 410, 186 (2017)ADSGoogle Scholar
  27. 27.
    H. Ju, K. Kim, D. Park, J. Kim, Fabrication of porous SnSeS nanosheets with controlled porosity and their enhanced thermoelectric performance. Chem. Engg. J. 335, 560 (2018)Google Scholar
  28. 28.
    A. Ektarawong, B. Alling, Stability of SnSe1−xSx solid solutions revealed by first-principles cluster expansion. J. Phys.: Condens. Matter 30, 29LT01 (2018)Google Scholar
  29. 29.
    W. Gao, Y. Li, J. Guo, M. Ni, M. Liao, H. Mo, J. Li, Narrow-gap physical vapour deposition synthesis of ultrathin SnS1−xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties. Nanoscale 10, 8787 (2018)Google Scholar
  30. 30.
    V. Kumar, D.K. Sharma, K. Sharma, P. Singh, D.K. Dwivedi, Preparation and characterization of screen printed SnS0.5Se0.5 alloy films. J. Mater. Sci.: Mater. Electron. 29, 846 (2018)Google Scholar
  31. 31.
    A. Banotra, N. Padha, Development of SnS0.4Se0.6 ternary alloy on annealing of thermally deposited films. J. Electron. Mater. 47, 1 (2018)Google Scholar
  32. 32.
    H. Kafashan, Comparison the effects of Se and Te inclusion on the physical and electrochemical properties of SnS thin films. Mater. Sci. Semicond. Process. 88, 148 (2018)Google Scholar
  33. 33.
    M. Parlak, C. Ercelebi, The effect of substrate and post-annealing temperature on the structural and optical properties of polycrystalline InSe thin films. Thin Solid Films 322, 334 (1998)ADSGoogle Scholar
  34. 34.
    K.T.R. Reddy, Y.V. Subbaiah, T.B.S. Reddy, D. Johnston, I. Forbes, R.W. Miles, Pyrolytic spray deposition of ZnSxSe1−x layers for photovoltaic applications. Thin Solid Films 431–432, 340 (2003)Google Scholar
  35. 35.
    D. Nithyaprakash, P. Maadeswaran, J. Chankdrasekaran, M. Ramamurthy, Effect of substrate temperature on structural, optical and thermal properties of chemically sprayed ZnS thin films. J. Optoelectron. Adv. Mater. 12, 2069 (2010)Google Scholar
  36. 36.
    Z.Y. Zhong, E.S. Cho, S.J. Kwon, Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu(In, Ga)Se2 solar cells. Thin Solid Films 547, 22 (2013)ADSGoogle Scholar
  37. 37.
    Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. Li, Thermoelectric performance of SnS and SnS–SnSe solid solution. J. Mater. Chem. A 3, 4555 (2015)Google Scholar
  38. 38.
    H. Kafashan, X-ray diffraction line profile analysis of undoped and Se-doped SnS thin films using Scherrer’s, Williamson–Hall and size–strain plot methods. J. Electron. Mater. 48, 1294 (2019)ADSGoogle Scholar
  39. 39.
    N. Revathi, P. Pratap, Y.P.V. Subbaiah, K.T. Ramakrishna Reddy, Substrate temperature dependent physical properties of In2S3 films. J. Phys. D: Appl. Phys. 41, 155404 (2008)Google Scholar
  40. 40.
    T. Schnabel, M. Seboui, E. Ahlswede, Band gap tuning of Cu2ZnGeSxSe4-x absorbers for thin-film solar cells. Energies 10, 1813 (2017)Google Scholar
  41. 41.
    L. Zhao, Y. Di, C. Yan, F. Liu, Z. Cheng, L. Jiang, X. Hao, Y. Lai, J. Li, Insitu growth of SnS absorbing layer by reactive sputtering for thin film solar cells. RSC Adv. 6, 4108 (2016)Google Scholar
  42. 42.
    R.E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, Y. Golan, Synthesis and properties of nanocrystalline π-SnS—a new cubic phase of tin sulphide. RSC Adv. 6, 5848 (2016)Google Scholar
  43. 43.
    J.M. Skelton, L.A. Burton, A.J. Jackson, F. Oba, S.C. Parker, A. Walsh, Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Phys. Chem. Chem. Phys. 19, 12452 (2017)Google Scholar
  44. 44.
    M. Steichen, R. Djemour, L. Gutay, J. Guillot, S. Siebentritt, P.J. Dale, Direct synthesis of single-phase p-type SnS by electrodeposition from a dicyanamide ionic liquid at high temperature for thin film solar cells. J. Phys. Chem. C 117, 4383 (2013)Google Scholar
  45. 45.
    S. Sohila, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles. J. Alloy. Comp. 509, 5843 (2011)Google Scholar
  46. 46.
    R.E. Abutbul, E. Segev, S. Samuha, L. Zeiri, V. Ezersky, G. Makov, Y. Golan, A new nanocrystalline binary phase: synthesis and properties of cubic tin monoselenide. CrystEngComm 18, 1918 (2016)Google Scholar
  47. 47.
    X. Xu, Q. Song, H. Wang, P. Li, K. Zhang, Y. Wang, K. Yuan, Z. Yang, Y. Ye, L. Dai, In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces. 9, 12601 (2017)Google Scholar
  48. 48.
    P.A. Fernandes, M.G. Sousa, P.M.P. Salome, J.P. Leitao, A.F. Da Cunha, Thermodynamic pathway for the formation of SnSe and SnSe2 polycrystalline thin films by selenization of metal precursors. CrystEngComm 15, 10278 (2013)Google Scholar
  49. 49.
    T. Sall, B.M. Soucase, M. Mollar, B. Hartitti, M. Fahoume, Chemical spray pyrolysis of β-In2S3 thin films deposited at different temperatures. J. Phys. Chem. Solids 76, 100 (2015)ADSGoogle Scholar
  50. 50.
    A. Kassim, H.S. Min, A. Sharif, J. Haron, S. Nagalingam, Chemical bath deposition of SnS thin films: AFM, EDAX and UV-Visible characterization. Oriental J. Chem. 27, 1375 (2011)Google Scholar
  51. 51.
    K. Wysocka, A. Ulatowska-Jarza, J. Bauer, I. Holowacz, B. Savu, G. Stanciu, H. Podbielska, AFM examination of sol-gel matrices doped with photosensitizers. Opt. Appl. 38, 127 (2008)Google Scholar
  52. 52.
    E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, Roughness parameters. J. Mater. Proces. Tech. 123, 133 (2002)Google Scholar
  53. 53.
    S. Mahato, A.K. Kar, The effect of annealing on structural, optical and photosensitive properties of electrodeposited cadmium selenide thin films. J. Sci. Adv. Mater. Devices 2, 165 (2017)Google Scholar
  54. 54.
    Neetu, M. Zulfequar, Photoconductivity of Se90-xTe10Znx thin films. Indian J. Pure Appl. Phys. 52, 53 (2014)Google Scholar
  55. 55.
    J. Tauc, Optical properties of solids (North-Holland, Amsterdam, 1970), p. 903Google Scholar
  56. 56.
    L. Zhao, Y. Di, C. Yan, F. Liu, Z. Cheng, L. Jiang, X. Hao, Y. Lai, J. Li, In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells. RSC Adv. 6, 4108 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Saritha
    • 1
  • S. Rasool
    • 1
  • K. T. Ramakrishna Reddy
    • 1
    Email author
  • A. M. Saad
    • 2
  • M. S. Tivanov
    • 3
  • S. E. Tikoto
    • 3
  • O. V. Korolik
    • 3
  • V. F. Gremenok
    • 4
  1. 1.Solar Photovoltaic Laboratory, Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Al-Balqa Applied UniversityAmmanJordan
  3. 3.Faculty of PhysicsBelarusian State UniversityMinskBelarus
  4. 4.Scientific and Practical Materials Research CentreNational Academy of SciencesMinskBelarus

Personalised recommendations