Applied Physics A

, 125:712 | Cite as

Analysis of Pr co-doped Al:ZnO thin films using feasible nebulizer spray technique for optoelectronic technology

  • K. Deva Arun Kumar
  • R. Thomas
  • S. ValanarasuEmail author
  • V. Ganesh
  • Mohd. Shkir
  • S. AlFaify
  • J. Thirumalai


The rare earth element, i.e., praseodymium (Pr) co-doped aluminium zinc oxide (AZO) thin films is coated on a well-cleaned glass substrate by facile and cost-effective nebulizer spray technique. The Pr co-doping concentrations varied from 0 to 1.5% with the AZO structure in the steps of 0.5%. The structural analysis was characterized by X-ray diffraction (XRD), showing that all the diffracted peaks exhibit polycrystalline hexagonal wurtzite structure and the size of the crystallites is abridged with increasing Pr doping level due to lattice defects. In Raman analysis, the existence of high mode peak E2 at 437 cm−1; confirmed ZnO wurtzite structure. From the morphological study, it is clearly visualized that the film possesses spherical shaped grains which were uniformly distributed without any pinholes and voids. The surface roughness of the films was increased considerably from 22 to 39 nm on growing Pr doping from 0 to 1.5% as seen using atomic force microscope. Energy dispersive X-ray analysis and elemental mapping images clearly showed the subsistence of Al, Zn, O and Pr elements in Pr:AZO film. The prepared films exposed good transmittance range between 84 and 90% and the optical band gap was found to be 3.28 eV for initial Pr (0.5%) doping concentration. The PL spectra clearly showed that a high intense emission peak observed at 390 nm are associated with NBE which indicates that the film has good optical quality. Hall measurement revealed that the prepared film, i.e., 1.5% Pr-doped AZO film has low resistivity and high carrier concentration which is perfectly suit for optoelectronic device applications.



The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant no. R.G.P. 2/30/40.

Compliance with ethical standards

Conflict of interest

The authors have no conflict to disclose here.


  1. 1.
    G. Golan, A. Axelevitch, B. Gorenstein, A. Peled, Novel type of indium oxide thin films sputtering for opto-electronic applications. Appl. Surf. Sci. 253, 6608–6611 (2007)ADSGoogle Scholar
  2. 2.
    T. Hino, Y. Ogawa, N. Kuramoto, Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell. Carbon 44, 880–887 (2006)Google Scholar
  3. 3.
    U. Betz, M. Kharrazi Olsson, J. Marthy, M.F. Escolá, F. Atamny, Thin films engineering of indium tin oxide: large area flat panel displays application. Surf. Coat. Technol. 200, 5751–5759 (2006)Google Scholar
  4. 4.
    D. Arai, M. Kondo, A. Matsuda, Reduction of light-induced defects by nano-structure tailored silicon solar cells using low-cost TCO substrates. Sol. Energy Mater. Sol. Cells 90, 3174–3178 (2006)Google Scholar
  5. 5.
    A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)ADSGoogle Scholar
  6. 6.
    A. Stadler, Transparent conducting oxides—an up-to-date overview. Materials 5, 661–683 (2012)ADSGoogle Scholar
  7. 7.
    K. Ravichandran, N. Dineshbabu, T. Arun, C. Ravidhas, S. Valanarasu, Effect of fluorine (an anionic dopant) on transparent conducting properties of Sb (a cationic) doped ZnO thin films deposited using a simplified spray technique. Mater. Res. Bull. 83, 442–452 (2016)Google Scholar
  8. 8.
    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Novel rare earth Gd and Al co-doped ZnO thin films prepared by nebulizer spray method for optoelectronic applications. Superlattices Microstruct. 123, 311–322 (2018)ADSGoogle Scholar
  9. 9.
    P. Ilanchezhiyan, G.M. Kumar, M. Subramanian, R. Jayavel, Effect of Pr doping on the structural and optical properties of ZnO nanorods. Mater. Sci. Eng. B 175, 238–242 (2010)Google Scholar
  10. 10.
    A. Douayar, P. Prieto, G. Schmerber, K. Nouneh, R. Diaz, I. Chaki, S. Colis, A. El Fakir, N. Hassanain, A. Belayachi, Investigation of the structural, optical and electrical properties of Nd-doped ZnO thin films deposited by spray pyrolysis. Eur. Phys. J. Appl. Phys. 61, 1–6 (2013)Google Scholar
  11. 11.
    R. Swapna, T. SrinivasaReddy, K. Venkateswarlu, M.S. Kumar, Effect of post-annealing on the properties of Eu doped ZnO nano thin films. Proc. Mater. Sci. 10, 723–729 (2015)Google Scholar
  12. 12.
    C.-H. Hsu, D.-H. Chen, Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 21, 285603 (2010)ADSGoogle Scholar
  13. 13.
    W.-H. Kim, W. Maeng, M.-K. Kim, H. Kim, Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes. J. Electrochem. Soc. 158, D495–D499 (2011)Google Scholar
  14. 14.
    K. Mahmood, S.B. Park, Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: effects of Al doping and annealing treatment. Electron. Mater. Lett. 9, 161–170 (2013)ADSGoogle Scholar
  15. 15.
    M. Farbod, M.Z. Shoushtari, S. Parhoodeh, Fabrication and characterization of Zn 1–x Al x O nanoparticles by DC arc plasma. Phys. B 406, 205–210 (2011)ADSGoogle Scholar
  16. 16.
    T. Ohgaki, Y. Kawamura, T. Kuroda, N. Ohashi, Y. Adachi, T. Tsurumi, F. Minami, H. Haneda, Optical properties of heavily aluminum-doped zinc oxide thin films prepared by molecular beam epitaxy, in Key Engineering Materials (Trans Tech Publications, Zurich, 2003), pp. 91–94Google Scholar
  17. 17.
    A. Gâlcă, M. Secu, A. Vlad, J. Pedarnig, Optical properties of zinc oxide thin films doped with aluminum and lithium. Thin Solid Films 518, 4603–4606 (2010)ADSGoogle Scholar
  18. 18.
    J.-I. Nomoto, T. Hirano, T. Miyata, T. Minami, Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions. Thin Solid Films 520, 1400–1406 (2011)ADSGoogle Scholar
  19. 19.
    D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys. B 523, 31–38 (2017)ADSGoogle Scholar
  20. 20.
    Y. Inoue, Y. Okamoto, J. Morimoto, Thermoelectric properties of porous zinc oxide ceramics doped with praseodymium. J. Mater. Sci. 43, 368–377 (2008)ADSGoogle Scholar
  21. 21.
    F. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahri, R. Chtourou, The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method under praseodymium doping. RSC Adv. 9, 5206–5217 (2019)Google Scholar
  22. 22.
    A. Singh, V. Viswanath, V. Janu, Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 129, 874–878 (2009)Google Scholar
  23. 23.
    K.D.A. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd 3+ doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2018)Google Scholar
  24. 24.
    S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, S. AlFaify, A facile microwave-assisted synthesis of PbMoO 4 nanoparticles and their key characteristics analysis: a good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018)ADSGoogle Scholar
  25. 25.
    M. Shkir, M.T. Khan, S. AlFaify, Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl. Nanosci. (2019). CrossRefGoogle Scholar
  26. 26.
    M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189–196 (2019)ADSGoogle Scholar
  27. 27.
    M.T. Khan, M. Shkir, A. Almohammedi, S. AlFaify, Fabrication and characterization of La doped PbI2 nanostructured thin films for opto-electronic applications. Solid State Sci. 90, 95–101 (2019)ADSGoogle Scholar
  28. 28.
    M. Shkir, S. AlFaify, Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. Res. 28, 2765–2774 (2019)ADSGoogle Scholar
  29. 29.
    M. Shkir, M.S. Hamdy, S. AlFaify, A facile one pot flash combustion synthesis of ZnO nanoparticles and their characterizations for photocatalytic applications. J. Mol. Struct. 1197, 610–616 (2019)ADSGoogle Scholar
  30. 30.
    M. Shkir, S. Aarya, R. Singh, M. Arora, G. Bhagavannarayana, T. Senguttuvan, Synthesis of ZnTe nanoparticles by microwave irradiation technique, and their characterization. Nanosci. Nanotechnol. Lett. 4, 405–408 (2012)Google Scholar
  31. 31.
    M. Shkir, M.T. Khan, I.M. Ashraf, S. AlFaify, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, A. Khan, Rapid microwave-assisted synthesis of Ag doped-PbS nanoparticles for optoelectronic applications. Ceram. Int. (2019). CrossRefGoogle Scholar
  32. 32.
    M. Shkir, M. Arif, A. Singh, I.S. Yahia, H. Algarni, S. AlFaify, A facile one-step flash combustion synthesis and characterization on C doped NiO nanostructures. Mater. Sci. Semicond. Process. 100, 106–112 (2019)Google Scholar
  33. 33.
    M. Shkir, I.S. Yahia, S. AlFaify, A facilely one pot low temperature synthesis of novel Pt doped PbS nanopowders and their characterizations for optoelectronic applications. J. Mol. Struct. 1192, 68–75 (2019)ADSGoogle Scholar
  34. 34.
    N. El-Kadry, A. Ashour, S. Mahmoud, Structural dependence of dc electrical properties of physically deposited CdTe thin films. Thin Solid Films 269, 112–116 (1995)ADSGoogle Scholar
  35. 35.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15, 627–637 (1966)ADSGoogle Scholar
  36. 36.
    M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017)ADSGoogle Scholar
  37. 37.
    S. AlFaify, M. Shkir, A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Opt. Mater. 88, 417–423 (2019)ADSGoogle Scholar
  38. 38.
    S. Alfaify, M. Shkir, A one pot room temperature synthesis of pure and Zn doped PbI2 nanostructures and their structural, morphological, optical, dielectric and radiation studies. J. Nanoelectron. Optoelectron. 14, 255–260 (2019)Google Scholar
  39. 39.
    M. Shkir, I.S. Yahia, V. Ganesh, Y. Bitla, I.M. Ashraf, A. Kaushik, S. AlFaify, A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci. Rep. 8, 13806 (2018)ADSGoogle Scholar
  40. 40.
    M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, M. Wahab, Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047–2049 (2009)ADSGoogle Scholar
  41. 41.
    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, I.S. Yahia, Rare earth Sm3+ co-doped AZO thin films for opto-electronic application prepared by spray pyrolysis. Ceram. Int. 44, 6730–6738 (2018)Google Scholar
  42. 42.
    G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976)ADSGoogle Scholar
  43. 43.
    K.D.A. Kumar, S. Valanarasu, S.R. Rosario, V. Ganesh, M. Shkir, C.J. Sreelatha, S. AlFaify, Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics. Solid State Sci. 78, 58–68 (2018)ADSGoogle Scholar
  44. 44.
    B.J. Lokhande, M.D. Uplane, Structural, optical and electrical studies on spray deposited highly oriented ZnO films. Appl. Surf. Sci. 167, 243–246 (2000)ADSGoogle Scholar
  45. 45.
    R. Kasar, N. Deshpande, Y. Gudage, J. Vyas, R. Sharma, Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide (SnO2) thin films with different substrate temperatures. Phys. B 403, 3724–3729 (2008)ADSGoogle Scholar
  46. 46.
    A.N. Chattarki, S.S. Kamble, L.P. Deshmukh, Role of pH in aqueous alkaline chemical bath deposition of lead sulfide thin films. Mater. Lett. 67, 39–41 (2012)Google Scholar
  47. 47.
    V. Russo, M. Ghidelli, P. Gondoni, C. Casari, A. Li Bassi, Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 115, 073508 (2014)ADSGoogle Scholar
  48. 48.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974–1976 (2003)ADSGoogle Scholar
  49. 49.
    M.H. Manghnani, A. Hushur, T. Sekine, J. Wu, J.F. Stebbins, Q. Williams, Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass. J. Appl. Phys. 109, 113509 (2011)ADSGoogle Scholar
  50. 50.
    K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Effect of precursors on key opto-electrical properties of successive ion layer adsorption and reaction-prepared Al:ZnO thin films. J. Electron. Mater. 47, 1335–1343 (2018)ADSGoogle Scholar
  51. 51.
    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Rare earth Eu 3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics. J. Sol Gel Sci. Technol. 86, 293–304 (2018)Google Scholar
  52. 52.
    C.M. Muiva, T.S. Sathiaraj, K. Maabong, Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram. Int. 37, 555–560 (2011)Google Scholar
  53. 53.
    G. Turgut, Investigation of characteristic properties of Pr-doped SnO2 thin films. Philos. Mag. 95, 1607–1625 (2015)ADSGoogle Scholar
  54. 54.
    K.D.A. Kumar, V. Ganesh, S. Valanarasu, M. Shkir, I. Kulandaisamy, A. Kathalingam, S. AlFaify, Effect of solvent on the key properties of Al doped ZnO films prepared by nebulized spray pyrolysis technique. Mater. Chem. Phys. 212, 167–174 (2018)Google Scholar
  55. 55.
    N. Narayanan, N. Deepak, Structural modification and band gap engineering of sol–gel dip-coated thin films of Zn 0.75 Mg 0.25 O alloy under vacuum annealing. Pramana 87, 87 (2016)ADSGoogle Scholar
  56. 56.
    H.Y. He, J. Lu, Band gap narrowing of cadmium oxide powder by rare earth praseodymium doping. MRS Commun. 3, 47–50 (2013)Google Scholar
  57. 57.
    M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, Effect of Gd3+ doping on key structural, morphological, optical, and electrical properties of CdO thin films fabricated by spray pyrolysis using perfume atomizer. J. Sol Gel Sci. Technol. 85, 31–40 (2018)Google Scholar
  58. 58.
    S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Effect of Sn dopants on the optical and electrical properties of ZnO films. Opt. Appl. 40, 7–14 (2010)Google Scholar
  59. 59.
    P. Sagar, P. Shishodia, R. Mehra, H. Okada, A. Wakahara, A. Yoshida, Photoluminescence and absorption in sol–gel-derived ZnO films. J. Lumin. 126, 800–806 (2007)Google Scholar
  60. 60.
    L. Ma, S. Ma, H. Chen, X. Ai, X. Huang, Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering. Appl. Surf. Sci. 257, 10036–10041 (2011)ADSGoogle Scholar
  61. 61.
    N.K. Divya, P.P. Pradyumnan, Photoluminescence quenching and photocatalytic enhancement of Pr-doped ZnO nanocrystals. Bull. Mater. Sci. 40, 1405–1413 (2017)Google Scholar
  62. 62.
    P. Xu, Y. Sun, C. Shi, F. Xu, H. Pan, The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. Sect. B 199, 286–290 (2003)ADSGoogle Scholar
  63. 63.
    A. El Fakir, M. Sekkati, G. Schmerber, A. Belayachi, Z. Edfouf, M. Regragui, F. Cherkaoui El Moursli, Z. Sekkat, A. Dinia, A. Slaoui, M. Abd-Lefdil, Influence of rare earth (Nd and Tb) co-doping on ZnO thin films properties. Phys. Status Solidi C 14, 1700169 (2017)Google Scholar
  64. 64.
    N. Narayanan, N. Deepak, Band gap bowing of nanocrystalline Zn (1–x) CaxO thin films for blue and ultraviolet optoelectronic applications. Solid State Sci. 71, 42–50 (2017)ADSGoogle Scholar
  65. 65.
    A. Elfakir, A.T. Silver, I. Soumahoro, A. Belayachi, A. Douayar, M. Abd-Lefdil, Preparation and characterization of rare-earth doped zinc oxide thin films. Energy Environ. Focus 2, 277–279 (2013)Google Scholar
  66. 66.
    H.-L. Shen, H. Zhang, L.-F. Lu, F. Jiang, Y. Chao, Preparation and properties of AZO thin films on different substrates. Prog. Nat. Sci. Mater. Int. 20, 44–48 (2010)Google Scholar
  67. 67.
    S.P. Patil, K.R. Sanadi, V.B. Helavi, Impact of Ni substitution on structural, electrical and thermoelectrical properties of zinc alluminium chromites synthesized by sol–gel route and their photocatalytic investigation. Mater. Res. 20, 1445–1453 (2017)Google Scholar
  68. 68.
    M. Anitha, K. Saravanakumar, N. Anitha, L. Amalraj, Influence of a novel co-doping (Zn+ F) on the physical properties of nano structured (1 1 1) oriented CdO thin films applicable for window layer of solar cell. Appl. Surf. Sci. 443, 55–67 (2018)ADSGoogle Scholar
  69. 69.
    D. Lakshminarayana, R. Desai, Thickness dependence of electrical resistivity and activation energy in AgSbTe2 thin films. J. Mater. Sci. Mater. Electron. 4, 183–186 (1993)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Deva Arun Kumar
    • 1
  • R. Thomas
    • 1
  • S. Valanarasu
    • 1
    Email author
  • V. Ganesh
    • 2
  • Mohd. Shkir
    • 2
  • S. AlFaify
    • 2
  • J. Thirumalai
    • 3
  1. 1.PG and Research Department of PhysicsArul Anandar CollegeMaduraiIndia
  2. 2.Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Department of Physics, Srinivasa Ramanujan CentreSASTRA Deemed UniversityKumbakonamIndia

Personalised recommendations