Applied Physics A

, 125:691 | Cite as

Deep-ultraviolet SnO2 nanowire phototransistors with an ultrahigh responsivity

  • Yang Chen
  • Jia SunEmail author
  • Weijie Qiu
  • Xiaowu Wang
  • Wanrong Liu
  • Yulong Huang
  • Guozhang Dai
  • Junliang YangEmail author
  • Yongli Gao


The effect of interfacial charges between a semiconductor and a dielectric is absolutely crucial for high-performance phototransistors. In this paper, we report a novel deep-ultraviolet photodetector based on one-dimensional SnO2 nanowires (NWs) phototransistors with an ion-gel as the surrounding gate dielectric. The density of trapped carriers induced by light irradiation could be significantly amplified via the use of high-efficiency surrounding electrolyte coupling, thus, enhancing the photogating effect. The as-fabricated devices demonstrated an outstanding responsivity of 2 × 107 A/W under weak light illumination of 18.2 μW/cm2. Based on our systematic investigation of the threshold voltage shift and photodetection performance, we present a theoretical explanation for the high-performance SnO2 NWs phototransistors with the assistance of energy band analysis. The specific configuration and high-efficiency gating of the ion-gel electrolyte were particularly interesting from a photodetection point of view, providing new insights into the design and optimization of deep ultraviolet photodetection.



This work is supported by the National Natural Science Foundation of China (61975241, 51673214) and the National Key Research and Development Program of China (2017YFA0206600).

Supplementary material

339_2019_2997_MOESM1_ESM.docx (4.6 mb)
Supplementary material 1 (DOCX 4715 kb)


  1. 1.
    S. Cai, X. Xu, W. Yang, J. Chen, X. Fang, Adv. Mater. 31(18), 1808138 (2019)CrossRefGoogle Scholar
  2. 2.
    M. Chen, B. Zhao, G. Hu, X. Fang, H. Wang, L. Wang, J. Luo, X. Han, X. Wang, C. Pan, Z.L. Wang, Adv. Funct. Mater. 28(14), 1706379 (2018)CrossRefGoogle Scholar
  3. 3.
    F. Teng, K. Hu, W. Ouyang, X. Fang, Adv. Mater. 30(35), 1706262 (2018)CrossRefGoogle Scholar
  4. 4.
    N. Huo, S. Gupta, G. Konstantatos, Adv. Mater. 29(17), 1606576 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Yan, Y. Chen, X. Wang, Y. Fu, J. Wang, J. Sun, G. Dai, S. Tao, Y. Gao, Nanoscale 11(5), 2162–2169 (2019)CrossRefGoogle Scholar
  6. 6.
    Z. Fan, P.C. Chang, J.G. Lu, E.C. Walter, R.M. Penner, C.H. Lin, H.P. Lee, Appl. Phys. Lett. 85(25), 6128–6130 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    J.B.K. Law, J.T.L. Thong, Appl. Phys. Lett. 88(13), 133114 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, Appl. Phys. Lett. 99(20), 203105 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Chen, B. Li, X. Mo, S. Li, J. Wen, H. Lei, Z. Zhu, G. Yang, P. Gui, F. Yao, G. Fang, Appl. Phys. Lett. 110(12), 123504 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    L. Li, P.S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, D. Golberg, Adv. Mater. 22(45), 5145–5149 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, W. Zhang, Small 10(9), 1848–1856 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Zhou, Q. Zhang, L. Gan, X. Li, H. Li, Y. Zhang, D. Golberg, T. Zhai, Adv. Funct. Mater. 26(5), 704–712 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Hu, F. Teng, H. Chen, M. Jiang, Y. Gu, H. Lu, L. Hu, X. Fang, Adv. Funct. Mater. 27(47), 0170447 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Sun, Y. Choi, Y.J. Choi, S. Kim, J.H. Park, S. Lee, J.H. Cho, Adv. Mater. 31(34), 1803831 (2019)CrossRefGoogle Scholar
  15. 15.
    T.P.I. Saragi, R. Pudzich, T. Fuhrmann, J. Salbeck, Appl. Phys. Lett. 84(13), 2334–2336 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    J. Wang, Y. Chen, L.-A. Kong, Y. Fu, Y. Gao, J. Sun, Appl. Phys. Lett. 113(15), 151101 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    A. Zhang, H. Kim, J. Cheng, Y.H. Lo, Nano Lett. 10(6), 2117–2120 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Jariwala, T.J. Marks, M.C. Hersam, Nat. Mater. 16(2), 170–181 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    F. Yang, S. Cheng, X. Zhang, X. Ren, R. Li, H. Dong, W. Hu, Adv. Mater. 30, 2 (2018)Google Scholar
  20. 20.
    C. Qian, J. Sun, L.-A. Kong, Y. Fu, Y. Chen, J. Wang, S. Wang, H. Xie, H. Huang, J. Yang, Y. Gao, ACS Photonics 4(10), 2573–2579 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Chen, X. Liu, B. Wu, H. Nan, H. Guo, Z. Ni, F. Wang, X. Wang, Y. Shi, X. Wang, Nano Lett. 17(10), 6391–6396 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    S. Jang, E. Hwang, Y. Lee, S. Lee, J.H. Cho, Nano Lett. 15(4), 2542–2547 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, Adv. Funct. Mater. 27(17), 1700264 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Nano Lett. 15(6), 3988–3993 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Gao, Y. Yi, X. Wang, H. Meng, D. Lei, X.F. Yu, P.K. Chu, J. Li, Adv. Mater. 31(16), e1900763 (2019)CrossRefGoogle Scholar
  26. 26.
    H. Fang, W. Hu, Adv Sci. 4(12), 1700323 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Alquraishi, Y. Fu, W. Qiu, J. Wang, Y. Chen, L.-A. Kong, J. Sun, Y. Gao, Org. Electron. 71, 72–78 (2019)CrossRefGoogle Scholar
  28. 28.
    Y.S. Rim, Y.M. Yang, S.H. Bae, H. Chen, C. Li, M.S. Goorsky, Y. Yang, Adv. Mater. 27(43), 6885–6891 (2015)CrossRefGoogle Scholar
  29. 29.
    W.Y. Weng, S.J. Chang, C.L. Hsu, T.J. Hsueh, A.C.S. Appl, Mater. Inter. 3(2), 162–166 (2011)CrossRefGoogle Scholar
  30. 30.
    S. R. A. Raza, S. H. H, A. Shokouh, Y. T. Lee, R. Ha, H. J. Choi, S. Im, J. Mater. Chem C. 2(22), 4428–4435 (2014).Google Scholar
  31. 31.
    D.R. Khanal, J. Wu, Nano Lett. 7(9), 2778–2783 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M.J. Renn, T.P. Lodge, C.D. Frisbie, Nat. Mater. 7(11), 900–906 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    C. Qian, L.-A. Kong, J. Yang, Y. Gao, J. Sun, Appl. Phys. Lett. 110(8), 083302 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    S.H. Kim, K. Hong, W. Xie, K.H. Lee, S. Zhang, T.P. Lodge, C.D. Frisbie, Adv. Mater. 25(13), 1822–1846 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, W. Riess, I.E.E.E. Trans, Electron Dev. 55(11), 2827–2845 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, B. Dubertret, Nano Lett. 14(5), 2715–2719 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    F.R. Libsch, J. Kanicki, Appl. Phys. Lett. 62(11), 1286–1288 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    P.J. McWhorter, P.S. Winokur, Appl. Phys. Lett. 48(2), 133–135 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    A. Daus, C. Vogt, N. Münzenrieder, L. Petti, S. Knobelspies, G. Cantarella, M. Luisier, G.A. Salvatore, G. Tröster, I.E.E.E. Trans, Electron Dev. 64(7), 2789–2796 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    M. Yamamoto, K. Ueno, K. Tsukagoshi, Appl. Phys. Lett. 112(18), 181902 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    H. Shi, B. Cheng, Q. Cai, X. Su, Y. Xiao, S. Lei, J. Mate, Chem. C 4(36), 8399–8406 (2016)Google Scholar
  42. 42.
    V. Brinzari, Appl. Surf. Sci. 411, 437–448 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    S. Zhang, E.R. Hemesath, D.E. Perea, E. Wijaya, J.L. Lensch-Falk, L.J. Lauhon, Nano Lett. 9(9), 3268–3274 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    A.J. Arnold, A. Razavieh, J.R. Nasr, D.S. Schulman, C.M. Eichfeld, S. Das, ACS Nano 11(3), 3110–3118 (2017)CrossRefGoogle Scholar
  45. 45.
    E.R. Viana, J.C. González, G.M. Ribeiro, A.G. de Oliveira, J. Phys. Chem. C 117(15), 7844–7849 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and ElectronicsCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Applied Physics, School of Physics and ElectronicsCentral South UniversityChangshaHunanChina
  3. 3.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations