Applied Physics A

, 125:700 | Cite as

Symmetric growth of ZnO nanorod arrays on both the top and bottom polar surfaces of ZnO nanobelts by chemical bath deposition

  • Qingtao WangEmail author
Rapid communication


Brush-like and bridge-like hierarchical ZnO nanostructures were selectively grown on polar surfaces of ZnO nanobelts by chemical bath deposition (CBD). Symmetric growth of ZnO nanorod arrays on both the top and bottom polar surfaces of ZnO nanobelts suggests that the two polar planes have high surface energy and are metastable, which can promote preferred orientation growth along ± [0001] directions. Hierarchical ZnO nanostructures will be served as interconnects and functional components in the “bottom up” design to build up functional devices.



This work was supported financially by the Project of Shandong Province Higher Educational Science and Technology Program (J12LJ07).


  1. 1.
    Z.L. Wang, Mater. Sci. Eng. R 64, 33–71 (2009)CrossRefGoogle Scholar
  2. 2.
    Z.L. Wang, Mater. Today 7, 26–33 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Xu, Z.L. Wang, Nano Res. 4, 1013–1098 (2011)CrossRefGoogle Scholar
  4. 4.
    X.L. Wang, M. Ahmad, H.Y. Sun, Materials 10, 1304 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, X.Y. Kong, J.M. Zuo, Phys. Rev. Lett. 91, 185502 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano Lett. 3, 235–238 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    X.P. Gao, Z.F. Zheng, H.Y. Zhu, G.L. Pan, J.L. Bao, F. Wu, D.Y. Song, Chem. Commun. 6, 1428–1429 (2004)CrossRefGoogle Scholar
  8. 8.
    P. Das, B. Mondal, K. Mukherjee, Appl. Phys. A 124, 80 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    S. Goel, B. Kumar, Appl. Phys. A 125, 289 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Jie, G.Z. Wang, X.H. Han, Q.X. Yu, Y. Liao, G.P. Li, J.G. Hou, Chem. Phys. Lett. 387, 466–470 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186–196 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    P.X. Gao, Z.L. Wang, Appl. Phys. Lett. 84, 2883–2885 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Bremond, V. Consonni, J. Phys. Chem. C 117, 20738–20745 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne, H. Roussel, J. Phys. Chem. C 116, 25106–25111 (2012)CrossRefGoogle Scholar
  15. 15.
    V. Consonni, E. Sarigiannidou, E. Appert, A. Bocheux, S. Guillemin, F. Donatini, I.C. Robin, J. Kioseoglou, F. Robaut, ACS Nano 8, 4761–4770 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Cossuet, E. Appert, J.L. Thomassin, V. Consonni, Langmuir 33, 6269–6279 (2017)CrossRefGoogle Scholar
  17. 17.
    Y.J. Wu, C.H. Liao, C.Y. Hsieh, P.M. Lee, Y.S. Wei, Y.S. Liu, C.H. Chen, C.Y. Liu, J. Phys. Chem. C 119, 5122–5128 (2015)CrossRefGoogle Scholar
  18. 18.
    X.H. Lu, D. Wang, G.R. Li, C.Y. Su, D.B. Kuang, Y.X. Tong, J. Phys. Chem. C 113, 13574–13582 (2009)CrossRefGoogle Scholar
  19. 19.
    L.B. Wang, Y.P. Fan, H. Bala, G. Sun, Micro & Nano Lett. 6, 741–744 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations