Advertisement

Applied Physics A

, 125:694 | Cite as

Magnetic behaviors of spinel ferrite nanoparticles: a Monte Carlo simulation

  • S. Eddahri
  • A. RazoukEmail author
  • M. Karimou
  • M. Sajieddine
  • M. Sahlaoui
Article
  • 20 Downloads

Abstract

Iron oxide nanoparticles with different phases (α-Fe2O3, γ-Fe2O3 and Fe3O4) are classified as the substantial transition metal oxides taking advantage of technological importance. The results of a Monte Carlo study of magnetic ordering in selectively spinel nanoparticles are discussed. The classical spin model with the Heisenberg-type interactions was used with superexchange interaction term. Different types of selective structures were studied in the framework of crystalline spinel structures with perfect or disordered surface and dilution of octahedral sublattice. The results are compared for various degrees of magnetic competition between first neighbor’s interactions in inverse or mixed spinel nanoparticles. The results permit us to explain the variation in saturation magnetization and give a better insight into the complex interplay between cationic distribution and magnetic disorder in ferrimagnetic nanoparticles.

Notes

References

  1. 1.
    F.H. Chen, L.M. Zhang, Q.T. Chen, Y. Zhang, Z.J. Zhang, Chem. Commun. 46, 8633 (2010)CrossRefGoogle Scholar
  2. 2.
    P. Pan, Y. Lin, Z. Gan, X. Luo, W. Zhou, N. Zhang, J. Appl. Phys. 123, 115115 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    E. Garaio, J.M. Collantes, J.A. Garcia, F. Plazaola, S. Mornet, F. Couillaud, O. Sandre, J. Magn. Magn. Mater. 368, 432 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu, D.B. Shieh, J. Exp. Nanosci. 26, 729 (2005)Google Scholar
  5. 5.
    S.K. Giri, N.N. Das, G.C. Pradhan, Colloids Surf. A Physicochem. Eng. Asp. 389, 43 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Karami, Chem. Eng. J. 219, 209 (2013)Google Scholar
  7. 7.
    J. Kong, J.R. Liu, F.L. Wang, L.Q. Luan, M. Itoh, K. Machida, Appl. Phys. A 105, 351 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    L.Z. Shen, Y.S. Qiao, Y. Guo, J.R. Tan, J. Hazard Mater. 177, 495 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Abbas, M. Takahashi, C. Kim, J. Nanoparticle Res. 15, 1354 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J. Mazo-Zuluaga, J. Restrepo Phys. B 354, 20 (2004)CrossRefGoogle Scholar
  11. 11.
    S. Ouaissa, A. Benyoussef, G.S. Abo, M. Ouaissa1, M. Hafid, Phys. Procedia 75, 792 (2015)Google Scholar
  12. 12.
    M. Uhl, B. Siberchicot, J. Phys. Condens. Matter 7, 4227 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, J. Appl. Phys. 94, 3520 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    L. Berger, Y. Labaye, M. Tamine, J.M.D. Coey, Phys. Rev. B 77, 104431 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    J. Mazo-Zuluaga, J. Restrepo, J. Mejía-López, J. Appl. Phys. 103, 113906 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Krupicka, K. Zaveta, in Magnetic Oxides, Part I, edited by D.J. Craik (A Wiley-Interscience Publication, New York, 1975)Google Scholar
  17. 17.
    N. Perez, P. Guardia, A.G. Roca, M.P. Morales, C.J. Serna, O. Iglesias, F. Bartolome, L.M. Garcia, X. Batlle, A. Labarta, Nanotechnology 19, 475704 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    J.L. Dormann, F. D'Orazio, F. Lucari, E. Tronc, P. Prené, J.P. Jolivet, D. Fiorani, R. Cherkaoui, M. Noguès, Phys. Rev. B 53, 14291 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    F. Gazeau, E. Dubois, M. Hennion, R. Perzynski, Yu. Raikher, Europhys. Lett. 40, 575 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  21. 21.
    A. Razouk, M. Sahlaoui, S. Eddahri, E. Agouriane, M. Sajieddine, J. Supercond. Nov. Magn. 30(2), 425 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Salafranca, J. Gazquez, N. Pérez, A. Labarta, S.T. Pantelides, S.J. Pennycook, X. Batlle, M. Varela, Nano Lett. 12, 2499 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Caruntu, G. Caruntu, C.J. O’Connor, J. Phys. D Appl. Phys, 40, 5801 (2007)Google Scholar
  24. 24.
    J.R. Harrison, A. Purnis, Am. Miner. 81, 375 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    R.H. Kodama, A.E. Berkowitz, Phys. Rev. B 59, 6321 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    X. Zuo, B. Barbiellini, C. Vittoria, J. Magn. Magn. Mater. 272–276, 306 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    J. Fock, L.K. Bogart, D. González-Alonso, J.I. Espeso, M.F. Hansen, M. Varón, C. Frandsen, Q.A. Pankhurst, J. Phys. D Appl. Phys. 50, 265005 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurence and uses, 2nd edn. (Wiley-VCH, Weinheim, 2003) (ISBN: 978-3-527-60644-3) Google Scholar
  29. 29.
    M. Herlitschke, S. Disch, I. Sergueev, K. Schlage, E. Wetterskog, L. Bergström, R.P. Hermann, J. Phys. Conf. Ser. 711, 012002 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Eddahri
    • 1
  • A. Razouk
    • 1
    • 2
    Email author
  • M. Karimou
    • 3
    • 4
  • M. Sajieddine
    • 1
  • M. Sahlaoui
    • 1
  1. 1.Material Physics Laboratory, Faculty of Sciences and TechnologySultan Moulay Slimane UniversityBeni MellalMorocco
  2. 2.Department of Physics, Polydisciplinary FacultySultan Moulay Slimane UniversityBeni MellalMorocco
  3. 3.Institute of Mathematics and Physical Sciences (IMPS)Porto-NovoRepublic of Benin
  4. 4.Ecole Nationale Supérieure de Génie Energétique Et Des procédés AbomeyCotonouRepublic of Benin

Personalised recommendations