Applied Physics A

, 125:696 | Cite as

Synthesis and effect of temperature on morphological and photoluminescence properties of TiO2 nanoparticles

  • K. OmriEmail author
  • F. Alharbi


Sol–gel preparation of pure anatase TiO2 calcined at different temperatures has rarely been reported. The current study reports the relative investigation for the elaboration of TiO2 nanoparticles by sol–gel technique. SEM has been considered for the TiO2 samples before as well as for the following calcinations. The XRD pattern illustrated the purity of TiO2 particle materials and the average crystal size of our sample was calculated. The consequences have been discussed in the light of difference of morphological structures of diverse samples of nanomaterials. The optical reflectance of TiO2 nanoparticles demonstrated that all materials have an elevated reflectance (∼ 93%) in the 380–790 nm spectrum. Together for this, the Eg of the elaborated TiO2 samples has been considered from the spectrophotometric examination, which is quite considerable with the reported consequences. The photoluminescence (PL) spectra show that the sample has yellow strong emission.



This research project was supported by a grant from the Deanship of Scientific Research, Princess Nora Bint Abdul Rahman University (35-K-69).


  1. 1.
    V.C.S. Tony, C.H. Voon, C.C. Lee, B.Y. Lim, S.C.B. Gopinath, K.L. Foo, M.K.M. Arshad, A.R. Ruslinda, U. Hashim, M.N. Nashaain, Y. Al-Douri, Mater. Res. 20, 1658 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Lopez, R. Gomez, E. Sanchez, F. Tzompantzi, L. Vera, J. Sol–Gel Sci. Tech. 22, 99 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Bouhemadou, O. Boudrifa, N. Guechi, R. Khenata, Y. Al-Douri, Ş. Uğur, B. Ghebouli, S. Bin-Omran, Comput. Mater. Sci. 81, 561–574 (2014)CrossRefGoogle Scholar
  4. 4.
    M.E.A. Monir, H. Baltach, A. Abdiche, Y. Al-Douri, R. Khenata, S. Bin-Omran, X. Wang, D.P. Rai, A. Bouhemadou, W.K. Ahmed, C.H. Voon, J. Supercond. Novel Magn. 30, 2197–2210 (2017)CrossRefGoogle Scholar
  5. 5.
    J.A. Ayllon, A. Figueras, S. Garelik, L. Spirkova, J. Durand, L. Cot, J. Mater. Sci. Lett. 18, 1319 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Bouhemadou, D. Allali, K. Boudiaf, B. Al-Qarni, S. Bin-Omran, R. Khenata, Y. Al-Douri, J. Alloys Compd. 774, 299–314 (2019)CrossRefGoogle Scholar
  7. 7.
    P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007)CrossRefGoogle Scholar
  8. 8.
    H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Nano Lett. 10, 478 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99, 16646 (1995)CrossRefGoogle Scholar
  11. 11.
    L.V. Saraf, S.I. Patil, S.B. Ogale, S.R. Sainkar, S.T. Kshirsager, Int. J. Mod. Phys. B 12, 2635 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    P.N. Zhu, A.S. Nair, S.J. Peng, S.Y. Yang, S. Ramakrishn, ACS Appl. Mater. Interfaces 4, 581 (2012)CrossRefGoogle Scholar
  13. 13.
    X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan, ACS Appl. Mater. Interfaces 4, 3944 (2012)CrossRefGoogle Scholar
  14. 14.
    H.I. Kim, S. Kim, J.K. Kang, W. Choi, J. Catal. 309, 49 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, J Mater. Sci. Mater. Electron. 28, 12977 (2017)CrossRefGoogle Scholar
  16. 16.
    K. Omri, L. El-Mir, Superlattices Microstruct. 70, 24 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    K. Omri, I. Najeh, L. El-Mir, Ceram. Int. 42, 8940 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Pourmand, M.R. Mohammadizadeh, Curr. Nanosci. 4, 151 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Wei, X. Yuan, X. Liu, Appl. Surf. Sci. 494, 850 (2019)CrossRefGoogle Scholar
  20. 20.
    J.S. Roy, T.P. Majumder, R. Dabrowski, Funct. Mater. Lett. 7, 1450054 (2014)Google Scholar
  21. 21.
    B.L. Tian, X.T. Zhang, S.X. Dai, K. Cheng, Z.S. Jin, Y.B. Huang, Z.L. Du, G.T. Zou, B.S. Zou, J. Phys. Chem. C 112, 5361 (2008)CrossRefGoogle Scholar
  22. 22.
    B. Huang, Y. Yang, X. Chen, D. Ye, Catal. Commun. 11, 844 (2010)CrossRefGoogle Scholar
  23. 23.
    C.M. Yim, C.L. Pang, G. Thornton, Phys. Rev. Lett. 104, 36806 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Z.D. Mahmoudabadi, E. Eslami, J. Alloys Compd. 793, 336 (2019)CrossRefGoogle Scholar
  25. 25.
    H.P. Quiroz, A. Dussan, Appl. Surf. Sci. 484, 688 (2019)ADSCrossRefGoogle Scholar
  26. 26.
    A.E.J. Ganzalez, S.G. Santiago, Semicond. Sci. Technol. 22, 709 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    K. Omri, A. Bettaibi, K. Khirouni, L. El-Mir, Phys B 537, 167 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    C. Telegang, V. Goetz, Y. Richardson, G. Plantard, J. Blin, Catal. Today 328, 183 (2019)CrossRefGoogle Scholar
  29. 29.
    S. Haffad, K.K. Kiprono, Surf. Sci. 686, 10 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    J.S. Roy, T. Pal-Majumder, R. Dabrowski, B.K. Mahato, A. Barman, Adv. Mater. Lett. 6, 47 (2015)CrossRefGoogle Scholar
  31. 31.
    J.S. Roy, T. Pal-Majumder, Indian J. Phys. 89, 485 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    J.S. Roy, T. Pal-Majumder, R. Dabrowski, A. Dey, P.P. Ray, Opt. Mater. 46, 467 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    C. Jia, Y. Cao, P. Yang, Funct. Mater. Lett 06, 1350025 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Science and Arts, SajirUniversity of ShaqraSajirSaudi Arabia
  2. 2.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabesTunisia
  3. 3.Department of Physics, College of SciencePrincess Nora Bint Abdulrahman UniversityRiyadhSaudi Arabia

Personalised recommendations