Applied Physics A

, 125:698 | Cite as

Structural variations during aging of the particles synthesized by laser ablation of copper in water

  • Ke Zhang
  • Rashid A. GaneevEmail author
  • Ganjaboy S. Boltaev
  • Chunlei GuoEmail author


The formation of particles during ablation of copper (Cu) in distilled water by different pulse duration (5 ns, 200 ps and 30 fs), wavelength (1064 and 355 nm of 5 ns pulses), and energy is demonstrated. It is found that the initial particles of Cu rapidly oxidize to form cupric oxide (CuO) and cuprous oxide (Cu2O) particles. Pulse duration and wavelength play a crucial role during the process of formation, morphology change, and aging of particles. We demonstrate that ultra-short pulses allow obtaining particles with smaller sizes and narrower distribution. It is shown that the morphology of CuO/Cu2O particles in this case becomes more stable.



The financial support from National Key Research and Development Program of China (2017YFB1104700, 2018YFB1107202), National Natural Science Foundation of China (NSFC, 91750205, 61774155, 61705227), Scientific Research Project of the Chinese Academy of Sciences (QYZDB-SSW-SYS038), Jilin Provincial Science & Technology Development Project (20180414019GH) and The Key Program of the International Partnership Program of CAS (181722KYSB20160015) is appreciated. R.A.G. thanks the financial support from Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2018VSA0001).


  1. 1.
    F. Pincella, K. Isozaki, K. Miki, Light Sci Appl 3, e133 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    O. Blum and N. T. Shaked, Light: Sci Appl 4, e322 (2015)Google Scholar
  3. 3.
    R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Phys. B 41, 045603 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    I.A. Sukhov, G.A. Shafeev, V.V. Voronov, M. Sygletou, E. Stratakis, C. Fotakis, Appl. Surf. Sci. 302, 79–82 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    P.K. Shrestha, Y.T. Chun, D. Chu, Light Sci. Appl. 4, e259 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, Chem. Rev. 108, 2064–2110 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Chen, B. Jia, Y. Zhang, M. Gu, Light Sci. Appl. 2, e92 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    R.A. Ganeev, High-order harmonic generation in laser plasma plumes (Imperial College Press, London, 2012)CrossRefGoogle Scholar
  9. 9.
    M. Gu, H. Bao, X. Gan, N. Stokes, J. Wu, Light Sci. Appl. 3, e126 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    O.L. Muskens, L. Bergamini, Y. Wang, J.M. Gaskell, N. Zabala, C.H. de Groot, Light Sci. Appl. 5, e16173 (2016)CrossRefGoogle Scholar
  11. 11.
    R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Phys. Stat. Sol. B 241, R1–R4 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G. Lozano, S.R. Rodriguez, M.A. Verschuuren, J. Gomez Rivas, Light Sci. Appl. 5, e16080 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Y.-H. Su, Y.-F. Ke, S.-L. Cai, Q.-Y. Yao, Light Sci. Appl. 1, e14 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Xie, R.S. Joshya, J. Yang, C. Guo, Opt Mater Express 9, 2994 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    N. Acacia, F. Barreca, E. Barletta, D. Spadaro, G. Currò, F. Neri, Appl. Surf. Sci. 256, 6918–6922 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y.-S. Lin, W.-C. Hsu, K.-C. Huang, J.A. Yeh, Appl. Surf. Sci. 258, 2–6 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    K. Zhang, D.S. Ivanov, R.A. Ganeev, G.S. Boltaev, P.S. Krishnendu, S.C. Singh, Nanomaterials 9, 1–19 (2019)Google Scholar
  18. 18.
    Z.Y. Zhang, H.M. Xiong, Materials 8, 3101–3127 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    E.G. Goh, X. Xu, P.G.M. Cormick, Scripta Mater. 78, 49–52 (2014)CrossRefGoogle Scholar
  20. 20.
    G.-H. Fan, S.-L. Qu, Z.-Y. Guo, Q. Wang, Z.-G. Li, Chin. Phys. B 21, 047804 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    K. Wang, H. Long, M. Fu, G. Yang, P. Lu, Opt. Express 18, 13874–13879 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    T. Yamamoto, Solid State Ionics 172, 299–302 (2004)CrossRefGoogle Scholar
  23. 23.
    J. Liu, X. Huang, Y. Li, K.M. Sulieman, X. He, F. Sun, Cryst. Growth Des. 6, 1690–1696 (2006)CrossRefGoogle Scholar
  24. 24.
    H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B 109, 18260–18266 (2005)CrossRefGoogle Scholar
  25. 25.
    J.M.J. Santillán, F.A. Videla, M.B. Fernández van Raap, D.C. Schinca, L.B. Scaffardi, J. Appl. Phys. 113, 134305 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Kislyuk, O.P. Dimitriev, J. Nanosci Nanotech. 8, 131–148 (2008)CrossRefGoogle Scholar
  27. 27.
    T. Karali, N. Can, L. Valberg, A.L. Stepanov, P.D. Townsend, Ch. Buchal, R.A. Ganeev, A.I. Ryasnyansky, H.G. Belik, M.L. Jessett, C. Ong, Phys. B 363, 88–95 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources 196, 5756–5760 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, Sens. Actuators A Phys. 171, 207–211 (2011)CrossRefGoogle Scholar
  30. 30.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, Prog. Mater Sci. 60, 208–337 (2014)CrossRefGoogle Scholar
  31. 31.
    R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Phys. Stat. Sol. B 241, 935–944 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, Z. Zhang, J. Cryst. Growth 291, 196–201 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    N.G. Semaltianos, Crit. Rev. Solid State Mater. Sci. 35, 105–124 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Gondal, A.M. Ilyas, U. Baig, Ceram. Int. 42, 13151–13160 (2016)CrossRefGoogle Scholar
  35. 35.
    K. Zhang, S.K. Maurya, R.A. Ganeev, K.S. Rao, C. Guo, J. Opt. 20, 125502 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    V. Svetlichnyi, A. Shabalina, I. Lapin, D. Goncharova, A. Nemoykina, Appl. Surf. Sci. 372, 20–29 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    M. Castro-Lopez, D. Brinks, R. Sapienza, N.F. van Hulst, Nano Lett. 11, 4674–4678 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    D.A. Goncharova, I.N. Lapin, E.S. Savelyev, V.A. Svetlichnyi, Russian Phys. J. 60, 1197–1205 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    D. M. Arboleda, J. M. J. Santillán, L. J. M. Herrera, M. B. F. V. Raap, D. Muraca, D. C. Schinca, Plasmonics: Metallic Nanostructures & Their Optical Properties XIII (2015)Google Scholar
  40. 40.
    M.A. Gondal, T.F. Qahtan, M.A. Dastageer, Y.W. Maganda, D.H. Anjum, J. Nanosci. Nanotechn. 13, 5759–5766 (2013)CrossRefGoogle Scholar
  41. 41.
    K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359–S366 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    A. Nath, A. Khare, J. Appl. Phys. 110, 9111 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Hamad, G.K. Podagatlapalli, S.P. Tewari, S.V. Rao, Pramana 82, 331–337 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    A. Hamad, L. Li, Z. Liu, Appl. Phys. A 120, 1247–1260 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    B. Al-Jumaili, Z. Talib, A. Zakaria, A. Ramizy, N. Ahmed, S. Paiman, J. Ying, I. Muhd, H. Baqiah, Appl. Phys. A 124, 577 (2018)ADSCrossRefGoogle Scholar
  46. 46.
    M. Gondal, T. Qahtan, M. Dastageer, Y. Maganda, D. Anjum, J. Nanosci. Nanotech 13, 5759–5766 (2013)CrossRefGoogle Scholar
  47. 47.
    H.J. Jung, Y. Yu, M.Y. Choi, B. Korean Chem. Soc 36, 3–4 (2015)CrossRefGoogle Scholar
  48. 48.
    B. Oktem, I. Pavlov, S. Ilday, H. Kalaycıoglu, A. Rybak, S. Yavas, M. Erdogan, F. Ilday, Nat. Photonics 7, 897 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    S. Hamad, G. Podagatlapalli, S. Ptewari, S.V. Rao, Pramana-J. Phys. 82, 331–337 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    P.K. Raul, S. Senapati, A.K. Sahoo, I.M. Umlong, R.R. Devi, A.J. Thakur, V. Veer, RSC Adv. 4, 40580–40587 (2014)CrossRefGoogle Scholar
  51. 51.
    J. Singh, G. Kaur, M. Rawat, J. Bioelectron. Nanotechnol. 1, 9 (2016)Google Scholar
  52. 52.
    A. Hamad, L. Li, Z. Liu, Appl. Phys. A 122, 904 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, G.A. Shafeev, Opt. Express 17, 12650 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)CrossRefGoogle Scholar
  55. 55.
    R.A. Ganeev, G.S. Boltaev, R.I. Tugushev, T. Usmanov, Appl. Phys. A 100, 119–123 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    M. Hashida, A. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862–867 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    H. Ehrenreich, H.R. Philipp, Phys. Rev. 128, 1622–1629 (1962)ADSCrossRefGoogle Scholar
  58. 58.
    A. Oliver, J.C.C. Wong, J. Roiz, J.M. Hernández, L.R. Fernández, A. Crespos, Nucl. Instrum. Methods Phys. Res. B 175, 495 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    L. Kleinman, K. Mednick, Phys. Rev. B 21, 1549–1553 (1980)ADSCrossRefGoogle Scholar
  60. 60.
    W.Y. Ching, Y.N. Xu, K.W. Wong, Phys. Rev. B 40, 7684–7695 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    R.K. Swarnkar, S.C. Sigh, R. Gopal, Bull. Mater. Sci. 34, 1363–1369 (2011)CrossRefGoogle Scholar
  62. 62.
    H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi, M.Y. Choi, J. Environ. Sci. 74, 107–115 (2018)CrossRefGoogle Scholar
  63. 63.
    T. Sakka, S. Masai, K. Fukami, Y.H. Ogata, Spectrochimica Acta Part B 64, 981–985 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805–3821 (2009)CrossRefGoogle Scholar
  65. 65.
    Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, M. Han, Adv. Mater. 17, 42–47 (2005)CrossRefGoogle Scholar
  66. 66.
    I. Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, J. Optoelectron Adv Mater 10, 3177–3181 (2008)Google Scholar
  67. 67.
    S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, Z. Yang, ACS Appl. Mater. Interfaces. 5, 4429–4437 (2013)CrossRefGoogle Scholar
  68. 68.
    H.J. Jung, Y. Yu, M.Y. Choi, B Korean Chem. S 36, 3–4 (2015)CrossRefGoogle Scholar
  69. 69.
    H. Khalid, S. Ghani, S. Shamaila, H. Saba, N. Zafar, R. Sharif, Acta Metall. Sin. 29, 748–754 (2016)CrossRefGoogle Scholar
  70. 70.
    S. Sun, X. Zhang, Y. Sun, J. Zhang, S. Yang, X. Song, RSC Adv. 3, 13712 (2013)CrossRefGoogle Scholar
  71. 71.
    R.M. Tilaki, A.I. Zad, S.M. Mahdavi, Appl. Phys. A 88, 415–419 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    B. Eneaze, A. Jumaili, Z.A. Talib, A. Zakaria, A. Ramizy, N.M. Ahmed, Appl. Phys. A 124, 577 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Faculty of PhysicsVoronezh State UniversityVoronezhRussia
  4. 4.The Institute of OpticsUniversity of RochesterRochesterUSA
  5. 5.Department of PhysicsAmerican University of SharjahSharjahUAE

Personalised recommendations