Applied Physics A

, 125:687 | Cite as

Characterizing nickel oxide nanostructures produced by laser ablation method: effects of laser fluence

  • M. Safa
  • D. DorranianEmail author
  • A. A. Masoudi
  • L. Farhang Matin


Effects of laser fluence on properties of pulsed laser ablation-produced nickel (Ni) nanoparticles have been studied experimentally. In this experiment, the output pulse of a Nd–YAG laser at 1064-nm wavelength and 7-ns pulse width with four different fluences was employed to irradiate a high purity Ni bulk in distilled water. Productions were studied using UV–Vis–NIR spectrum of samples, X-ray diffraction pattern, photoluminescence spectrum, dynamic light scattering size measurement, and transmission and scanning electron microscope images. Results show that produced nanostructures were multi-crystalline structure nickel oxide nanoparticles with spherical shape, and their sizes decreased with increasing the fluence of laser pulse.



  1. 1.
    R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, B. Jacquier, J.C. Bertolini, Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl. Surf. Sci. 254, 5181–5190 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M. Ganjali, M. Ganjali, P. Vahdatkhah, S.M.B. Marashi, Synthesis of Ni nanoparticles by pulsed laser ablation method in liquid phase. Procedia Mater. Sci. 11, 359–363 (2015)CrossRefGoogle Scholar
  3. 3.
    N. Patraa, K. Akashb, S. Shivab, R. Gagranib, H. Sai, P. Raob, V.R. Anirudhb, I.A. Palania, V. Singh, Parametric investigations on the influence of nano-second Nd3+:YAG laser wavelength and fluence in synthesizing NiTi nano-particlesusing liquid assisted laser ablation technique. Appl. Surf. Sci. 366, 104–111 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    P. Nasiri, D. Doranian, A. Hossein Sari, Synthesis of Au/Si nanocomposite using laser ablation method. Opt. Laser Technol. 113, 217–224 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    D. Dorranian, S.A.A. Afshar, N. Tahmasebi, A.F. Eskandari, Effect of laser pulse energy on the characteristics of Cu nanoparticles produced by laser ablation method in acetone. J. Clust. Sci. 25, 1147–1156 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci. 39, 1677–1684 (2016)CrossRefGoogle Scholar
  7. 7.
    D. Dorranian, A.F. Eskandari, Effect of laser fluence on the characteristics of ZnO nanoparticles produced by laser ablation in acetone. Mol. Cryst. Liq. Cryst 607, 1–12 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Clust. Sci. 27, 127–138 (2016)CrossRefGoogle Scholar
  9. 9.
    E. Solati, L. Dejam, D. Dorranian, Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser Technol. 58, 26–32 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A. Mehrani, D. Dorranian, E. Solati, Properties of Au/ZnO nanocomposite prepared by laser irradiation of the mixture of individual colloids. J. Clust. Sci. 26, 1743–1754 (2015)CrossRefGoogle Scholar
  11. 11.
    A.V. Bulgakov, N.M. Bulgakova, Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma. Quantum Electron. 29, 433–437 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A. Mazzi, A. Miotello, Simulation of phase explosion in the nanosecond laser ablation of aluminum. J. Colloid Interface Sci. 489, 126–130 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mahmoodi, S.Z. Shoorshinie, D. Dorranian, Synthesis and characterization of AgCl nanoparticles produced by laser ablation of Ag in NaCl solution. Appl. Phys. A 122, 452 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M. Khademian, M. Zandi, M. Amirhoseiny, D. Dorranian, Synthesis of CuS nanoparticles by laser ablation method in DMSO media. J. Clust. Sci. 28, 2753–2764 (2017)CrossRefGoogle Scholar
  15. 15.
    P. Camarda, F. Messina, L. Vaccaro, G. Buscarino, S. Agnello, F.M. Gelardi, M. Cannas, Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution. J. Appl. Phys. 120, 124312 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    J. Noack, A. Vogel, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electron. 35(8), 1156–1167 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    K. Nahen, A. Vogel, Plasma Formation in water by picosecond and nanosecond Nd:YAG laser pulses—part II: transmission, scattering, and reflection. IEEE J. Sel. Top. Quantum Electron. 2(4), 861–870 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    R.L. Calabro, D. Yang, D. Young Kim, Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: comparison with chemical oxidation. J. Colloid Interface Sci. S0021–9797(18), 30503–30504 (2018)Google Scholar
  19. 19.
    N. Lasemi, U. Pacher, L.V. Zhigilei, O. Bomatí-Miguel, R. Lahoz, W. Kautek, Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air. Appl. Surf. Sci. 433, 772–779 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    M. Abbasi, D. Dorranian, Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water. Opt. Spectrosc. 118(3), 472–481 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    E. Solati, D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Clust. Sci. 26, 727–742 (2015)CrossRefGoogle Scholar
  22. 22.
    M.A. Gonda, T.A. Saleh, Q.A. Drmosh, Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl. Surf. Sci. 258, 6982–6986 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    E. Solati, M. Mashayekh, D. Dorrania, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 112, 689–694 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    F. Mafune, T. Okamoto, M. Ito, Surfactant-free small Ni nanoparticles trapped on silica nanoparticles prepared by pulsed laser ablation in liquid. Chem. Phys. Lett. 591, 193–196 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    G. Gubert, E. Ribeiro, J. Varalda, A.G. Bezerra, W.H. Schreiner, D.H. Mosca, Laser irradiation of iron, cobalt, and nickel targets in liquid nitrogen: a facile approach for nitride nanoparticle fabrication of ferromagnetic transition metals. J. Alloy Compd. 725, 519–525 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Mardis, N. Takada, S. Machmudah, K. Wahyudiono, H. Sasaki, M.Goto Kanda, Nickel nanoparticles generated by pulsed laser ablation in liquid CO2. Res. Chem. Intermed. 42, 4581–4590 (2016)CrossRefGoogle Scholar
  27. 27.
    E. Solati, E. Vaghri, D. Dorranian, Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation. Appl. Phys. A 124, 749 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    D. Dorranian, E. Solati, L. Dejam, Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNorth Tehran Branch, Islamic Azad UniversityTehranIran
  2. 2.Plasma Physics Research CenterScience and Research Branch, Islamic Azad UniversityTehranIran
  3. 3.Department of PhysicsAlzahra UniversityTehranIran

Personalised recommendations