Advertisement

Applied Physics A

, 125:701 | Cite as

Combined effects of nanosecond laser-induced surface oxidation and nanostructure formation for selective colorization of nickel surfaces

  • Huazhong Zhu
  • Martin Ehrhardt
  • Pierre Lorenz
  • Joachim Zajadacz
  • Jian Lu
  • Klaus ZimmerEmail author
Article
  • 37 Downloads

Abstract

Metal surfaces can be nanostructured by laser irradiation making use of different effects ranging from thin film generation to nanostructures formation. Here, the colorization of pure nickel surfaces by nanosecond laser irradiation in air is demonstrated and studied in detail. Correlations between chromaticity coordinates and laser-processing parameter show that the accumulated fluence is the dominating factor in creation of a specific colored surface. The color of the laser-irradiated surfaces shows both angle-dependent and angle-independent in reliance on the processing conditions. The examination of the laser-colored surface demonstrates that lateral and vertical organized, laser-induced structures with nano-, micro-, and mesoscopic scales can be found simultaneously which contribute to the colorization in a particular manner. A comprehensive analysis of the processes involved in the color formation at nickel was performed by examining the surfaces by SEM, reflectometry, XPS, and XRD to verify the multi-process mechanisms of color formation. The most saturated colors result from interference effects within the redeposited layers. It was found that controlling the hatching distance applying optimized laser fluence enables a wider color range and allows a very precise setting of the color. Based on the extracted laser-processing parameters, the surface coloration of arbitrary pattern with desired optical properties becomes practicable, and nanosecond laser color marking can, therefore, be expanded to potentially new applications.

Notes

Acknowledgements

Authors are very grateful to Mr. Hirsch, Dr. Gerlach, and Dr. Frost for the assistance in XPS, XRD, and AFM, analysis, and discussion these results. Authors are also thankful to Mr. Zagoranskiy and Mr. Bayer offering meaningful experimental support for this work.

References

  1. 1.
    L. Baufay, F.A. Houle, R.J. Wilson, J. Appl. Phys. 61, 4640 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    A.P. del Pino, P. Serra, J.L. Morenza, Appl. Surf. Sci. 197, 887 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    H. Lochbihler, Opt. Express 17, 12189 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    B. Dusser, Z. Sagan, H. Soder et al., Opt. Express 18, 2913 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    V. Veiko, G. Odintsova, E. Ageev et al., Opt. Express 22, 24342 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    P.X. Fan, M.L. Zhong, L. Li et al., J. Appl. Phys. 115, 13 (2014)CrossRefGoogle Scholar
  7. 7.
    A.J. Antonczak, D. Kocon, M. Nowak et al., Appl. Surf. Sci. 264, 229 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Guay, A.C. Lesina, G. Cote et al., Nat. Commun. 8, 12 (2017)CrossRefGoogle Scholar
  9. 9.
    A.J. Antonczak, B. Stepak, P.E. Koziol et al., Appl. Phys. A 115, 1003 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Z.L. Li, H.Y. Zheng, K.M. Teh et al., Appl. Surf. Sci. 256, 1582 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Wautelet, Appl. Phys. A 50, 131 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Wang, C.L. Guo, J. Appl. Phys. 102, 5 (2007)Google Scholar
  13. 13.
    J.C. Wang, C.L. Guo, Appl. Phys. Lett. 87, 3 (2005)Google Scholar
  14. 14.
    A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 92, 041914 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Ahsan, F. Ahmed, Y.G. Kim et al., Appl. Surf. Sci. 257, 7771 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.E. Sipe, J.F. Young, J.S. Preston et al., Phys. Rev. B 27, 1141 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    J. Bonse, S. Hoehm, S.V. Kirner et al., IEEE J Sel Top Quantum Electron 23, 9000615 (2017)CrossRefGoogle Scholar
  18. 18.
    M.A. Garcia, J. Phys. D 44, 20 (2011)CrossRefGoogle Scholar
  19. 19.
    S.A. Maier, M.L. Brongersma, P.G. Kik et al., Phys. Rev. B 65, 4 (2002)Google Scholar
  20. 20.
    F. Garrelie, J.P. Colombier, F. Pigeon et al., Opt. Express 19, 9035 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Nishijima, L. Rosa, S. Juodkazis, Opt. Express 20, 11466 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T. Csizmadia, T. Smausz, C. Tapai et al., J. Laser Micro Nanoeng. 10, 110 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Smausz, T. Csizmadia, C. Tápai et al., Appl. Surf. Sci. 389, 1113 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    A.P. del Pino, P. Serra, J.L. Morenza, Thin Solid Films 415, 201 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    C. Gellini, F.L. Deepak, M. Muniz-Miranda et al., J. Phys. Chem. C 121, 3597 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Veiko, Y. Karlagina, M. Moskvin et al., Opt. Lasers Eng. 96, 63 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Palanco, S. Marino, M. Gabas et al., Opt. Express 22, 3991 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    V. Dudoitis, V. Ulevicius, G. Raciukaitis et al., Lith. J. Phys. 51, 248 (2011)CrossRefGoogle Scholar
  29. 29.
    D.P. Adams, V.C. Hodges, D.A. Hirschfeld et al., Surf. Coat. Technol. 222, 1 (2013)CrossRefGoogle Scholar
  30. 30.
    Z. Gimbutas, L. Greengard, J. Comput. Phys. 232, 22 (2013)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Papoff, B. Hourahine, Opt. Express 19, 21432 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego London Boston, 1998), p. 1096Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Leibniz Institute of Surface Engineering (IOM)LeipzigGermany
  2. 2.Department of Applied PhysicsNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations