Advertisement

Applied Physics A

, 125:685 | Cite as

A novel solid-state dealloying method to prepare ultrafine ligament nanoporous Ti

  • Yao Shi
  • Lixian LianEmail author
  • Ying Liu
  • Naiyu Xing
Article
  • 8 Downloads

Abstract

Nanoporous Titanium (NPT) is an attractive material with high corrosion resistance, good biocompatibility, and large surface area for many new functional applications. The solid dealloying reaction was explored using Ti–Cu and Mg diffusion couples to prepare NPT powders. The dealloying temperature in this novel method was much lower than that in the traditional liquid metal dealloying. In addition, the NPT with finer ligament width below 200 nm was obtained when the temperature was lower than 485 °C. A diffusion growth model was applied to explain the quantitative relationship between the morphology and various dealloying parameters. The coarsening exponent and activation energy were also estimated to reveal the difference between dealloying in Mg melts and Mg solids. The quantity as well as the formation ability of the Mg–Cu liquid phase played a crucial role. The NPT with smaller ligament size and larger surface area exhibits higher electrochemical capacitance performances.

Notes

Acknowledgements

This work was financially supported by the Sichuan Province Science and Technology Major Industrial Program (No. 16ZC1910).

References

  1. 1.
    Q.G. Bai, Y. Wang, J. Zhang, Y. Ding, Z.G. Peng, Z.H. Zhang, J. Mater. Chem. C 4, 45 (2016)CrossRefGoogle Scholar
  2. 2.
    K.U. Lee, J.Y. Byun, H.J. Shin, S.H. Kim, J. Alloy Compd. 779, 74 (2019)CrossRefGoogle Scholar
  3. 3.
    X.T. Chen, C.H. Si, Y. Wang, Y. Ding, Z.H. Zhang, Nano Res. 9(6), 1831 (2016)CrossRefGoogle Scholar
  4. 4.
    G.Y. Zhao, L. Zhang, Y.N. Niu, K.N. Sun, Electrochem. Acta 224, 64 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    A. Mccue, J. Karma, Erlebacher. MRS BULL 43, 27 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Christoph, S. Marco, M. Christoph, L. Anastasia, F. Lisa, M. Thorsten, W. Arne, R. Andreas, Materialia 2, 131 (2018)CrossRefGoogle Scholar
  7. 7.
    X.L. Zhang, G.J. Li, D. Duan, H.Y. Wang, Z.B. Sun, Corros. Sci. 135, 57 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    B. Bhushan, B.S. Murty, K. Mondal, Corros. Sci. 139, 155 (2018)CrossRefGoogle Scholar
  9. 9.
    S.S. Wang, L. Liu, J. Hazard. Mater. 340, 445 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Hakamada, M. Mabuchi, J. Alloy. Compd. 485, 583 (2009)CrossRefGoogle Scholar
  11. 11.
    M.J. Zhan, G. Li, Q. Wei, H.L. Cui, L. Lin, Membr. Sci. Technol. 29(5), 12 (2009)Google Scholar
  12. 12.
    T. Wada, K. Yubuta, A. Inoue, H. Kato, Mater. Lett. 65, 1076 (2011)CrossRefGoogle Scholar
  13. 13.
    Y.S. Sun, J.F. Liu, C.P. Wu, H.H. Huang, J. Alloy. Compd. 643, S124 (2015)CrossRefGoogle Scholar
  14. 14.
    L. Richert, F. Variola, F. Rosei, J.D. Wuest, A. Nanci, Surf. Sci. 604, 1445 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Tsuda, T. Wada, H. Kato, J. Appl. Phys. 114, 11503 (2013)CrossRefGoogle Scholar
  16. 16.
    J.W. Kim, T. Wada, S.G. Kim, H. Kato, Mater. Lett. 116, 223 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida, H. Kato, Nano Lett. 14, 4505 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Mccue, S. Ryan, K. Hemker, X.D. Xu, N. Li, M.W. Chen, J. Erlebacher, Adv. Eng. Mater. 18(1), 46 (2016) CrossRefGoogle Scholar
  19. 19.
    T. Wada, H. Kato, Scr. Mater. 68, 723 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Wada, K. Yubuta, H. Kato, Scr. Mater. 118, 33 (2016)CrossRefGoogle Scholar
  21. 21.
    F.M. Zhang, P. Li, J. Yu, L.L. Wang, F. Saba, G. Dai, S.Y. He, J. Mater. Res. 32(8), 1528 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Jin, R. Li, L. Zuo, T. Zhang, J. Alloy. Compd. 695, 1600 (2017)CrossRefGoogle Scholar
  23. 23.
    Z.H. Lyu, H. Wu, Y.C. Lu, J. Wu, J. Electroanal. Chem. 832, 380 (2019)CrossRefGoogle Scholar
  24. 24.
    Y.R. Nian, H. Teng, J. Electroanal. Chem. 540(2), 119 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Takeuchi, Inoue. Mater. Trans. 46(12), 2817 (2005)CrossRefGoogle Scholar
  26. 26.
    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, S.S. An, Y.L. Xing, Corros. Sci. 58, 133 (2012)CrossRefGoogle Scholar
  27. 27.
    X.K. Luo, R. Li, L. Huang, T. Zhang, Corros. Sci. 67, 100 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    L.H. Qian, M.W. Chen, Appl. Phys. Lett. 91, 083105 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    N. Wang, Y. Pan, S.K. Wu, J. Mater. Sci. Technol. 34, 1162 (2017)CrossRefGoogle Scholar
  30. 30.
    I. Fabrikant, H. Hotop, J. Chem. Phys. 128, 124308 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Roberts, R.C.T. Slade, Electrochem. Acta 55, 7460 (2010)CrossRefGoogle Scholar
  32. 32.
    C. Portet, P.L. Taberna, P. Simon, E. Flahaut, Electrochem. Soc. 153, A649 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations