Applied Physics A

, 125:686 | Cite as

Magnetic and microwave absorption properties of SrZnCoFe16O27/CoFe2O4 and SrZnCoFe16O27/SrFe12O19 composite powders

  • P. Azizi
  • S. M. MasoudpanahEmail author
  • S. Alamolhoda


SrZnCoFe16O27/CoFe2O4 (SrW/CFO) and SrZnCoFe16O27/SrFe12O19 (SrW/SrM) composite powders were prepared by solution combustion synthesis method using the mixture of precursor solutions of SrW, CFO, and SrM species. With addition of CFO precursor solution, some amounts of SrM phase rather than SrW phase were formed. The SrW/CFO composite powders were consisted of platelet-like SrW particles being mixed with cubic-like spinel particles, while only hexagonal particles were observed in SrW/SrM composite powders. The microwave absorption measurements in X band (8–12 GHz) exhibited the maximum absorption of − 8.1 dB at 10.1 GHz by the SrW/CFO composite powders, while the SrW/SrM composite powders showed the minimum reflection loss of − 16.5 dB at 9.7 GHz with the bandwidth of 3.53 GHz at matching thickness of 3.3 mm.



  1. 1.
    S.E. Jacobo, P.G. Bercoff, C.A. Herme, L.A. Vives, Sr hexaferrite/Ni ferrite nanocomposites: magnetic behavior and microwave absorbing properties in the X-band. Mater. Chem. Phys. 157, 124–129 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Xie, L. Xu, C. Liu, Dielectric and magnetic response of Sr–Zn ferrite composite. RSC Adv. 3, 15856–15865 (2013)CrossRefGoogle Scholar
  3. 3.
    F. Guo, G. Ji, J. Xu, H. Zou, S. Gan, X. Xu, Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27 (RE=La, Nd, Sm) particles. J. Magn. Magn. Mater. 324, 1209–1213 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    X. Gui, W. Ye, J. Wei, K. Wang, R. Lv, H. Zhu, F. Kang, J. Gu, D. Wu, Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption. J. Phys. D Appl. Phys. 42, 075002 (2009). (5pp) ADSCrossRefGoogle Scholar
  5. 5.
    M. Sun, J. Zheng, L. Liang, K. Sun, Y. Song, S. Zhao, Effect of Zn substitution on the electromagnetic and microwave absorbing properties of BaCo2 hexaferrite. J. Mater. Sci. Mater. Electron. 26, 9970–9976 (2015)Google Scholar
  6. 6.
    S. Hazra, B.K. Ghosh, H.R. Joshi, M.K. Patra, R.K. Jani, S.R. Vaderab, N.N. Ghosh, Development of a novel one-pot synthetic method for the preparation of (Mn0.2Ni0.4Zn0.4Fe2O4)x − (BaFe12O19)1 − x nanocomposites and the study of their microwave absorption and magnetic properties. RSC Adv. 4, 45715 (2014)CrossRefGoogle Scholar
  7. 7.
    W. Widanarto, F.M. Rahayu, S.K. Ghoshal, M. Effendi, W.T. Cahyanto, Impact of ZnO substitution on magnetic response and microwave absorption capability of strontium-natural nanoferrites. Results Phys. 5, 253–256 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    K.C. Verma, N. Goyal, M. Singh, M. Singh, R.K. Kotnal, Hematite α-Fe2O3 induced magnetic and electrical behavior of NiFe2O4 and CoFe2O4 ferrite nanoparticles. Results Phys. 13, 102212 (2019)CrossRefGoogle Scholar
  9. 9.
    K.C. Verma, R.K. Kotnala, Spring like ferromagnetic behavior of xLi0.5Fe2.5O4–(1 2 x)SrFe2O4 nanoferrite thin films. J Nanopart Res 13, 4437–4444 (2011)CrossRefGoogle Scholar
  10. 10.
    S.R. Saeedi Afshar, M. Hasheminiasari, S.M. Masoudpanah, Structural, magnetic and microwave absorption properties of SrFe12O19/ Ni0.6Zn0.4Fe2O4 composites prepared by one-pot solution combustion method. J. Magn. Magn. Mater. 466, 1–6 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    A. Drmota, J. Koselj, M. Drofenik, A. Žnidaršič, Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. J. Magn. Magn. Mater. 324, 1225–1229 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A.R. Farhadizadeh, S.A.S. Ebrahimi, S.M. Masoudpanah, Magnetic and microwave absorption properties of ZnCo-substituted W-type strontium hexaferrite. J. Magn. Magn. Mater. 382, 233–236 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A. Ghasemi, G.R. Gordani, E. Ghasemi, Co2W hexaferrite nanoparticles-carbon nanotube microwave absorbing nanocomposite. J. Magn. Magn. Mater. 469, 391–397 (2019)ADSCrossRefGoogle Scholar
  14. 14.
    G. Wei, T. Wang, H. Zhang, X. Liu, Y. Han, Y. Chang, L. Qiao, F. Li, Enhanced microwave absorption of barium cobalt hexaferrite composite with improved bandwidth via c-plane alignment. J. Magn. Magn. Mater. 471, 267–273 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    F. Guo, R. Li, J. Xu, L. Zou, S. Gan, Electromagnetic properties and microwave absorption enhancement of Ba0.85RE0.15Co2Fe16O27-polyaniline composites: RE=Gd, Tb, Ho. Colloid Polym. Sci. 292, 2173–2183 (2014)CrossRefGoogle Scholar
  16. 16.
    H.Y. Liu, Y.S. Li, Synthesis and microwave absorbing properties of Cobalt ferrite. IOP Conf. Ser. Mater. Sci. Eng. 292, 012062 (2018)CrossRefGoogle Scholar
  17. 17.
    S.S. Seyyed Afghahi, M. Jafarian, Y. Atassi, Microstructural and magnetic studies on BaMgxZnxX2xFe12–4xO19 (X=Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J. Magn. Magn. Mater. 406, 184–191 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    P. Azizi, S.M. Masoudpanah, S. Alamolhoda, Magnetic and microwave absorption properties of SrZnCoFe16O27 powders synthesized by solution combustion method. J. Alloy Compd. 739, 211–217 (2018)CrossRefGoogle Scholar
  19. 19.
    S.M. Masoudpanah, S.A. Seyyed Ebrahimi, Effect of pH value on the structural and magnetic properties of nanocrystalline strontium hexaferrite thin films. J. Magn. Magn Mater. 323, 2643–e2647 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Wen, J.-M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4, 58090–58100 (2014)CrossRefGoogle Scholar
  22. 22.
    H.H. Nersisyan, J.H. Lee, J.-R. Ding, K.-S. Kim, K.V. Manukyan, A.S. Mukasyan, Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives. Prog. Energy Combust. Sci. 63, 79–118 (2017)CrossRefGoogle Scholar
  23. 23.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  24. 24.
    B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel autocombustion method. Solid State Commun. 147, 479–483 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    H. Kojima, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, Vol. 3, ed. EP. Wohlfarth. (North-Holland, Amsterdam, 1982), pp. 305–391.Google Scholar
  26. 26.
    H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsi, I. Shakir, H. Wahab, M. Asghar, M. AzharKhan, Influence of cobalt substitution on the magnetic properties of zinc nanocrystals synthesized via micro-emulsion route. Ceram Int 40, 9439–9444 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Kaur, A. Singh, V. Kumar, D.S. Ahlawat, Structural, thermal and magnetic investigations of cobalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method. J Magn Magn Mater 474, 505–511 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    C.S. Lin, C.C. Hwang, T.H. Huang, G.P. Wang, C.H. Peng, Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route. Mater. Sci. Eng. B 139, 24–36 (2007)CrossRefGoogle Scholar
  30. 30.
    Z.W. Li, L. Chen, C.K. Ong, High-frequency magnetic properties of W-type barium–ferrite BaZn2−xCoxFe16O27 composites. J. Appl. Phys. 94, 5918–5924 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Abbas, A.K. Dixit, R. Chatterjee, T.C. Goel, Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J. Magn. Magn. Mater. 309, 20–24 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    S.B. Narang, P. Kaur, S. Bahel, K. Pubby, Absorption characterization of Mn-Zr-substituted La-Sr hexaferrite using open-circuit and short-circuit approaches in 8.2–18 GHz frequency range. J. Electron. Mater. 47(1), 820–827 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    A. Baykal, İ.S. Ünver, U. Topal, H. Sözeri, Pb substituted Ba, Sr-hexaferrite nanoparticles as high quality microwave absorbers. Ceram Int 43, 14023–14030 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Kaur, S. Bahel, S.B. Narang, Microwave absorption behavior and electromagnetic properties of Ni-Zr doped La-Sr hexagonal ferrite synthesized by auto-combustion method. Mater. Res. Bull. 100, 275–281 (2018)CrossRefGoogle Scholar
  35. 35.
    K. Prabhjyot, S.K. Chawla, S.B. Narang, K. Pubby, Structural, magnetic and microwave absorption behavior of Co-Zr substituted strontium hexaferrites prepared using tartaric acid fuel for electromagnetic interference suppression. J. Magn. Magn. Mater. 422, 304–314 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    G.T. Rado, Rev. Mod. Phys. 25, 81 (1953)ADSCrossRefGoogle Scholar
  37. 37.
    J. Verwell, in Magnetic Properties of Materials, edited by J. Smit, (McGraw–Hill, New York, 1971), p. 64Google Scholar
  38. 38.
    Z.W. Li, L. Chen, C.K. Ong, High-frequency magnetic properties of W-type barium–ferrite BaZn2-xCoxFe16O27 composites. J. Appl. Phys. 94, 5918 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Z.W. Li, L. Chen, C.K. Ong, High-frequency magnetic properties of W-type barium–ferrite BaZn 2–x Co x Fe 16 O 27 composites. J. Appl. Phys. 94, 5918–5924 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Han, D. Li, M. Tong, X. Wei, R. Skomski, W. Liu, Z.D. Zhang, D.J. Sellmyer, Permittivity and permeability of Fe(Tb) nanoparticles and their microwave absorption in the 2e18 GHz range. J. Appl. Phys. 107, 09A929 (2010)CrossRefGoogle Scholar
  41. 41.
    M. Ahmad, R. Grossinger, M. Kriegisch, F. Kubel, M.U. Rana, Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol–gel auto combustion method. J. Magn. Magn. Mater. 332, 137–145 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations