Advertisement

Applied Physics A

, 125:684 | Cite as

Voltage- and temperature-dependent electrical behavior of gap-type Ag–Ag2S–Pt atomic switch

  • Mir Massoud Aghili YajaddaEmail author
  • Xiao Gao
Article
  • 20 Downloads

Abstract

The voltage- and the temperature-dependent electrical behavior of a gap-type Ag–Ag2S–Pt atomic switch is theoretically investigated. The electrical tunnel current passing through the switch is calculated and the growth of Ag nanowires between two electrodes is simulated. Our calculations show the switching time (the time that is required to decrease the resistance of switch below the resistance quantum RQ ≈ 6.5 kΩ) exponentially decreases as the applied voltage increases that agrees very well with experimental findings. Furthermore, we assumed the Ag2S layer is a few atomic layer thick so the diffusion time of Ag+ ions within the Ag2S layer can be neglected compared to the formation of Ag nanowires. As a result, the switching time decreases exponentially as temperature increases. The switching time is calculated while different DC voltages are applied to the switch over temperature range of T = 300–350 K. The results imply both of the voltage- and the temperature-dependent behavior of the gap-type Ag–Ag2S–Pt atomic switch is dominated by the Coulomb blockade (CB) effect of Ag nanowires as electrons require energy to overcome the CB energy of Ag nanowires to sustain the growth of Ag nanowires.

Notes

Acknowledgements

Yajadda would like to acknowledge the Australian Research Council, Centre of Excellence for Integrative Brain Function and the University of Sydney for their support. Gao would like to acknowledge the University of Melbourne for its support through the McKenzie Postdoctoral Fellowship Program.

References

  1. 1.
    M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Science 332, 702 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M.M.A. Yajadda, K.H. Müller, D.I. Farrant, K. Ostrikov, Appl. Phys. Lett. 100, 11105 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Herrmann, K.H. Müller, T. Reda, G.R. Baxter, B. Raguse, G.J.J.B. de Groot, R. Chai, M. Roberts, L. Wieczorek, Appl. Phys. Lett. 91, 183105 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M.M.A. Yajadda, I. Levchenko, K. Ostrikov, J. Appl. Phys. 110, 023303 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Moaied, M.M.A. Yajadda, K. Ostrikov, Plasmonics 10, 1615 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, H.H. Shieh, M. Aono, A.Z. Stieg, J.K. Gimzewski, PLoS ONE 7, e42772 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    E.C. Demis, R. Aguilera, H.O. Sillin, K. Scharnhorst, E.J. Sandouk, M. Aono, A.Z. Stieg, J.K. Gimzewski, Nanotechnology 26, 204003 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S.K. Bose, J.B. Mallinson, R.M. Gazoni, S.A. Brown, IEEE Trans. Electron Devices 64, 5194 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, J. Appl. Phys. 91, 10110 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Wang, T. Kadohira, T. Tada, S. Watanabe, Nano Lett. 7, 2688 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    C. Liang, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 18, 485202 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Schmid, Phys. Rev. Lett. 51, 1506 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    A. Nayak, T. Tamura, T. Tsuruoka, K. Terabe, S. Hosaka, T. Hasegawa, M. Aono, J. Phys. Chem. Lett. 1, 604 (2010)CrossRefGoogle Scholar
  16. 16.
    M.M.A. Yajadda, X. Gao, Phys. Lett. A 382, 3031 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    K.H.- Müller, M.M.A. Yajadda, J. Appl. Phys. 111, 123705 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M.M.A. Yajadda, J. Appl. Phys. 116, 153707 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Hanna, M. Tinkham, Phys. Rev. B 44, 5919 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Butler, J. Appl. Phys. 51, 5607 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics, Centre for Complex SystemsThe University of SydneyCamperdownAustralia
  2. 2.ARC Centre of Excellence for Integrative Brain FunctionThe University of SydneyCamperdownAustralia
  3. 3.Department of Biomedical Engineering, Melbourne School of EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations