Applied Physics A

, 125:683 | Cite as

Estimating the ionicity of an inverse spinel ferrite and the cation distribution of La-doped NiFe2O4 nanocrystals for gas sensing properties

  • S. Deepapriya
  • S. Lakshmi Devi
  • P. Annie Vinosha
  • John D. Rodney
  • C. Justin Raj
  • J. Ermine Jose
  • S. Jerome DasEmail author


Nanocrystalline NiLaFe2O4 exhibit unique properties, which make them promising candidates for an inclusive range of applications such as actuators, magnetic resonance imaging, including gas sensing element due to its inverse spinel structure. It is requisite to revamp its ionicity, phase and magnetic properties. A primal approach has been chosen to fabricate NiLaFe2O4nanocrystals by co-precipitation technique at different calcination temperatures (300 °C, 400 °C, 500 °C, 600 °C) phase, and ionicity as well as magnetic properties. Changes in the structural characteristics of as-synthesized samples have been found by the inclusion of rare-earth elements in X-ray diffraction studies. Fourier transform infrared spectral studies embrace two absorption bands peaked at 400 and 500 cm−1representing the octahedral and tetrahedral sites. The transmission electron microscopy analysis depicts the tailored morphology of as-synthesized nanocrystal. The magnetization was determined by vibrating sample magnetometer and found that Hc increases with decrease in Ms and magnetostriction coefficient. These results can be partially described by the frailer nature of La3+–Fe3+ions which are equated to Fe3+–Fe2+ interaction. A model for inverse spinel ferrite has been used which refers as O2p itinerant electron model. The magnetization and the cation distributions of the La doped inverse spinel ferrites were elucidated using this model. The sensor designates with high selectivity, repeatability and fast transition at room temperature (305 K) towards ammonia gas in particular when related to ethanol, acetone and toluene. Low deposition cost makes it competent for developing a cost-effective ammonia sensor.



The author (S. Jerome Das) is grateful to the Management of Loyola College, Chennai-34 for awarding Loyola College TOI project (3LCTOI14PHY002) and acknowledges the technical help rendered by sophisticated Analytical Instrumentation Facility, Cochin for TEM and UV analysis. The authors are grateful to Dr. Jeyadheepan, Assistant Professor, Multifunctional Materials and Devices lab, Sastra Deemed University for Gas sensor studies.


  1. 1.
    J. Charlotte, The last five years have been Earth’s warmest since records began. (MIT Technologly Review, 2019), Accessed 07 Feb 2019
  2. 2.
    C. Clark, G.A. Nnaji, W. Huang, J. Coast. Res. 68, 113–120 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Streck, P. Keenlyside, M. von Unger, J. Eur. Environ. Plan. Law 13, 3–29 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Kennedy, G.V. Williams, P.P. Murmu, B.J. Ruck, Phys. Rev. B 88, 1–5 (2013)CrossRefGoogle Scholar
  5. 5.
    A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, J. Magn. Magn. Mater. 355, 201–209 (2014)CrossRefGoogle Scholar
  6. 6.
    G.S. Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24, 436–445 (1970)CrossRefGoogle Scholar
  7. 7.
    N.T. Tu, P.N. Hai, L.D. Anh, M. Tanaka, Phys. Rev. B 92, 1–14 (2015)Google Scholar
  8. 8.
    J.B. Silva, W. De Brito, N.D. Mohallem, Mater. Sci. Eng. B 112, 182–187 (2004)CrossRefGoogle Scholar
  9. 9.
    P.A. Vinosha, K. Raja, A. Christina Fernandez, S. Krishnan, J. Das, Optik 127, 9917–9925 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Liu, Y. Sasaki, J.K. Furdyna, Phys. Rev. B 67, 1–9 (2003)Google Scholar
  11. 11.
    H. Wang, Y. Liu, M. Li, H. Huang, H.M. Xu, R.J. Hong, H. Shen, Optoelectron. Adv. Mater. Rapid Commun. 4, 1166–1169 (2010)Google Scholar
  12. 12.
    X. Meng, H. Li, J. Chen, L. Mei, K. Wang, X. Li, J. Magn. Magn. Mater. 321, 1155–1158 (2009)CrossRefGoogle Scholar
  13. 13.
    H. She, Y. Chen, X. Chen, K. Zhang, Z. Wang, D.L. Peng, J. Mater. Chem. 22, 2757–2765 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, J. Magn. Magn. Mater. 361, 150–156 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.Z. Khajeh, J. Alloy Compd. 662, 441–447 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Bouhadouza, A. Rais, S. Kaoua, M. Moreau, K. Taibi, A. Addou, Ceram. Int. 41, 11687–11692 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569–585 (1972)CrossRefGoogle Scholar
  18. 18.
    P.A. Vinosha, L.A. Mely, J.E. Jeronsia, S. Krishnan, J. Das, Optik 134, 99–108 (2017)CrossRefGoogle Scholar
  19. 19.
    P. Kumar, S.K. Sharma, M. Knobel, J. Chand, M. Singh, J. Electroceram. 27, 51 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Jiang, Y.M. Yang, Mater. Lett. 61, 4276–4279 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Briceño, J. Suarez, G. Gonzalez, Mater. Sci. Eng. C 78, 842–846 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Deepapriya, P.A. Vinosha, J.D. Rodney, M. Jose, S. Krishnan, J.E. Jose, S.J. Das, Vacuum 161, 5–13 (2019)CrossRefGoogle Scholar
  23. 23.
    K.K. Kefeni, T.A. Msagati, B.B. Mamba, Mater. Sci. Eng. B 215, 37–55 (2017)CrossRefGoogle Scholar
  24. 24.
    S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, J. Alloy Compd. 566, 54–61 (2013)CrossRefGoogle Scholar
  25. 25.
    R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., Mater. Sci. Eng. B 111, 164–174 (2004)CrossRefGoogle Scholar
  26. 26.
    Y.N. Du, J. Xu, Z.Z. Li, G.D. Tang, J.J. Qian, M.Y. Chen, W.H. Qi, RSC Adv. 8, 302–310 (2018)CrossRefGoogle Scholar
  27. 27.
    L.L. Ding, L.C. Xue, Z.Z. Li, S.Q. Li, G.D. Tang, W.H. Qi, L.Q. Wu, X.S. Ge, AIP Adv. 6, 1–23 (2016)Google Scholar
  28. 28.
    Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, S.R. Liu, R.R. Bian, J. Magn. Magn. Mater. 324, 1975–1981 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Huixia, C. Baiyi, Z. Deyi, Z. Jianqiang, T. Lin, J. Magn. Magn. Mater. 356, 68–72 (2014)CrossRefGoogle Scholar
  30. 30.
    R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Mater. Lett. 152, 189–191 (2015)CrossRefGoogle Scholar
  31. 31.
    I. Sandu, L. Presmanes, P. Alphonse, P. Tailhades, Thin Solid Films 495, 130–133 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Parthasarathy, V. Nandhini, B.G. Jeyaprakash, J. Colloid Interface Sci. 482, 81–88 (2016)CrossRefGoogle Scholar
  33. 33.
    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, J. Alloys Compd. 509, 966–972 (2011)CrossRefGoogle Scholar
  34. 34.
    W. Onreabroy, K. Papato, G. Rujijanagul, K. Pengpat, T. Tunkasiri, Ceram. Int. 38, S415–S419 (2012)CrossRefGoogle Scholar
  35. 35.
    S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Mater. Chem. Phys. 93, 224–230 (2005)CrossRefGoogle Scholar
  36. 36.
    B. Timmer, W. Olthuis, A. van den Berg, Sens. Actuators B. 107, 666–677 (2005)CrossRefGoogle Scholar
  37. 37.
    G.K. Mani, J.B. Rayappan, Sens. Actuators B Chem. 198, 125–133 (2014)CrossRefGoogle Scholar
  38. 38.
    N.S. Chen, X.J. Yang, E.S. Liu, J.L. Huang, Sens. Actuators B Chem. 66, 178–180 (2000)CrossRefGoogle Scholar
  39. 39.
    R. Kamble, B.V.L. Mathe, Sens. Actuators B Chem. 131, 205–209 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Ponmudi, R. Sivakumar, C. Sanjeeviraja, C. Gopalakrishnan, K. Jeyadheepan, Appl. Surf. Sci. 466, 703–714 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Deepapriya
    • 1
  • S. Lakshmi Devi
    • 2
  • P. Annie Vinosha
    • 1
  • John D. Rodney
    • 1
  • C. Justin Raj
    • 3
  • J. Ermine Jose
    • 4
  • S. Jerome Das
    • 1
    Email author
  1. 1.Department of PhysicsLoyola CollegeChennaiIndia
  2. 2.PG Department of PhysicsWomen’s Christian CollegeChennaiIndia
  3. 3.Department of ChemistryDongguk UniversitySeoulSouth Korea
  4. 4.Loyola-ICAM College of Engineering and Technology, Loyola CampusChennaiIndia

Personalised recommendations