Applied Physics A

, 125:677 | Cite as

Thermal stability and optical properties of single-layer nano-composite TiN/TiC-Ni/Mo solar-selective-absorbing coatings by laser cladding

  • Xuming PangEmail author
  • Ye Shen
  • Jinyi Wei
  • Wenyu Yang


Currently, the most important challenge for solar energy photo-thermal utilization is the thermal stability of solar absorber coatings at high temperature. The new one-layer nano-composite TiN/TiC-based cermet coatings were designed and fabricated with laser-cladding method in the air. The result indicated the laser cladding could be used to obtain 30 wt.%, TiN-30 wt.%, TiC-20 wt.%, and Ni-20 wt.% Mo cermet coatings with the desired optical properties. In particular, an absorptance (α) of ~ 80.1% and a thermal emissivity (ε) of ~ 2% at 300 K were calculated when the weight rate of nano-particles/micro-particles is 1:1. In addition, the thermal stability of the coating was outstanding after heat treatment at 650 °C for 6 h. The absorptance and emissivity of cermet coating were, respectively, 80.8% and 1.9% at 650 °C. The results indicated that nano-composite TiN/TiC-Ni/Mo cermets are suitable for spectrally selective materials. Moreover, the laser cladding was found to be an improved and novel preparation method in the field of solar-selective-absorbing coatings.



This work was supported by the National Natural Science Foundation of China (51502133).


  1. 1.
    H.C. Barshilia, N. Selvakumar, K.S. Rajam, Appl. Phys. Lett. 89, 191909 (2006)CrossRefADSGoogle Scholar
  2. 2.
    J. Moon, D. Lu, B. VanSaders, T.K. Kim, S.D. Kong, S. Jin, R. Chen, Z. Liu, Nano Energy 8, 238–246 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Wang, T.Y. Ouyang, X. Duan, C. Ke, X. Zhang, J. Min, A. Li, W. Guo, X. Cheng, Metals 7, 137 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Wang, J. Gao, H. Hu, H. Zhang, L. Liang, K. Javaid, F. Zhuge, H. Cao, L. Wang, Nano Energy 37, 232–241 (2017)CrossRefGoogle Scholar
  5. 5.
    X.M. Pang, Q. Wei, J.X. Zhou, H.Y. Ma, Materials 11, 1037 (2018)CrossRefADSGoogle Scholar
  6. 6.
    T.S. Sathiaraj, R. Thangaraj, O.P. Agnihotri, Sol. Energy Mater. 18, 343–356 (1989)CrossRefGoogle Scholar
  7. 7.
    X.H. Gao, W. Theiss, Y.Q. Shen, P.J. Ma, G. Liu, Sol. Energy. Mater. Sol. Cells. 167, 150–156 (2017)CrossRefGoogle Scholar
  8. 8.
    J.A. Ramírez-Rincón, O. Ares-Muzio, J.D. Macias, M.A. Estrella-Gutiérrez, F.I. Lizama-Tzec, G. Oskam, Appl. Phys. A Mater. 124, 252 (2018)CrossRefADSGoogle Scholar
  9. 9.
    X. He, D.J. Kong, R.G. Song, Materials 11, 198 (2018)CrossRefADSGoogle Scholar
  10. 10.
    Q.C. Zhang, J. Phys. D Appl. Phys. 34, 3113 (2001)CrossRefADSGoogle Scholar
  11. 11.
    J.P. Meng, R.R. Guo, H. Li, L.M. Zhao, X.P. Liu, Z. Li, Appl. Surf. Sci. 440, 932–938 (2018)CrossRefADSGoogle Scholar
  12. 12.
    Q. Wei, X.M. Pang, J.X. Zhou, C. Chen, Sol. Energy 171, 247–257 (2018)CrossRefADSGoogle Scholar
  13. 13.
    X.M. Pang, Mater. Res. Express. 4, 095503 (2017)CrossRefADSGoogle Scholar
  14. 14.
    A.A. Shah, C. Ungaro, C.M. Gupta, Sol. Energy. Mater. Sol. Cells. 134, 209–214 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Zheng, W.J. Liu, S.X. Wang, W.H. Xiong, Ceram. Int. 30, 2111–2115 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Power EngineeringNanjing Tech UniversityNanjingChina
  2. 2.School of Energy Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations