Applied Physics A

, 125:678 | Cite as

Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses

  • M. S. Al-Buriahi
  • Y. S. RammahEmail author


In this study, five samples of tellurite-based glasses with chemical composition TeO2–ZnO–NiO coded as (TZN1–TZN5) have been reported to investigate their optical and gamma-ray shielding properties. Index of refraction (no), molar refraction (RM), molar polarizability (αM), metallization property (M), and static dielectric constant (ε) for all the proposed glasses have been determined. Mass attenuation coefficients (μ/ρ) for the proposed glasses were calculated by Geant4 simulation code and WinXCOM software in the photon energy region 0.001–10 MeV. The obtained values from these methods were compared, and the correlation factor for each glass sample (R2) value was found to be 0.999. Based on the obtained values of μ/ρ and densities of the samples, different γ-ray shielding parameters such as half-value layer (HVL), effective atomic number (Zeff), and mean free path were evaluated. The HVL values for the selected glasses decreased in the order TZN1 < TZN2 < TZN3 < TZN4 < TZN5 and shielding effectiveness for the studied glasses were compared in the term of MFP with some traditional concretes, commercial glasses, and heavy metal oxide glasses. Results reveal that the studied glasses are promising candidates for radiation-shielding applications and can be applied in several of optical devices.



One of the authors (Al-Buriahi) would like to express his deep thanks appreciation to Prof. Dr. B. T. Tonguc, vice rector of Sakarya University, Turkey for his great support providing and all facilities necessary during this work.


  1. 1.
    I.Z. Hager, R. El-Mallawany, Preparation and structural studies in the (70–x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45, 897–905 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    T. Cheng, K. Asano, Z. Duan, T.H. Tuan, W. Gao, D. Deng, T. Suzuki, Y. Ohishi, Design and optimization of tellurite hybrid microstructured optical fiber with high nonlinearity and low flattened chromatic dispersion for optical parametric amplification. Opt. Commun. 318, 105–111 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, S. Buddhudu, Absorption and emission analysis of RE3+(Sm3+and Dy3+): lithium boro tellurite glasses. J. Nanosci. Nanotechnol. 9, 3672–3677 (2009)CrossRefGoogle Scholar
  4. 4.
    I.Z. Hager, R. El-Mallawany, M. Poulain, Infrared and Raman spectra of new molybdenum and tungsten oxy fluoride glasses. J. Mater. Sci. 34, 5163–5168 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    H.M.M. Moawad, H. Jain, R. El-Mallawany, DC conductivity of silver vanadium tellurite glasses. J. Phys. Chem. Solids 70, 224–233 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    N. Narasimha Rao, I.V. Kityk, V. Ravi Kumar, C. Srinivasa Rao, M. Piasecki, P. Bragiel, N. Veeraiah, Dc field induced optical effects in ZnF2–PbO–TeO2: TiO2 glass ceramics. Ceram. Int. 38, 2551–2562 (2012)CrossRefGoogle Scholar
  7. 7.
    R. El-Mallawany, I.A. Ahmed, Thermal properties of multicomponent tellurite glass. J. Mater. Sci. 43, 5131–5138 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M. Venkateswarlu, M.V.V.K.S. Prasad, K. Swapna, S.K. Mahamuda, A.S. Rao, A. Mohan Babu, D. Haranath, Pr3+ doped lead tungsten tellurite glasses for visible red lasers. Ceram. Int. 40, 6261–6269 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Sushama, P. Predeep, Thermal and optical studies of rare earth doped tungsten–tellurite glasses. Int. J. Appl. Phys. Math. 4, 139–143 (2014)CrossRefGoogle Scholar
  10. 10.
    D.K. Mohanty, V.K. Rai, Y. Dwivedi, S.B. Rai, Enhancement of upconversion intensity in Er3+ doped tellurite glass in presence of Yb3+. Appl. Phys. B Lasers Opt. 104, 233–236 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    R. El-Mallawany, The optical properties of tellurite glasses. J. Appl. Phys. 72, 1774–1777 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    X. Feng, J. Shi, M. Segura, N. White, P. Kannan, L. Calvez, X. Zhang, L. Brilland, W. Loh, Towards water-free tellurite glass fiber for 2–5 m nonlinear applications. Fibers 1, 70–81 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Stambouli, H. Elhouichet, B. Gelloz, M. Férid, Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics. J. Lumin. 138, 201–208 (2013)CrossRefGoogle Scholar
  14. 14.
    R. El-Mallawany, Introduction to tellurite glasses, in Technological Advances in Tellurite Glasses: Properties, Processing, and Applications, ed. by V.A.G. Rivera, D. Manzani (Springer, Cham, 2017), pp. 1–13Google Scholar
  15. 15.
    V. Kozhukharov, M. Marinov, G. Grigorova, Glass-formation range in binary tellurite systems containing transition metal oxides. J. Non Cryst. Solids 28, 429–430 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, S. Neov, Glass formation, properties and structure of glasses in the TeO2–ZnO system. J. Non Cryst. Solids 151, 134–142 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    S. Todoroki, S. Inoue, T. Matsumoto, Combinatorial evaluation system for thermal properties of glass materials using a vertical furnace with temperature gradient. Appl. Surf. Sci. 189, 241–244 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    W. Siriprom, K. Teanchai, O. Chaemlek, S. Sukphirom, Y. Ruangtaweep, N. Srisittipokakun, J. Kaewkhao, Effects of Ni2+ ions on soda lime silicate glasses. AMR 770, 307–310 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Gandhi, N. Krishna Mohan, N. Veeraiah, Role of nickel ion coordination on spectroscopic and dielectric properties of ZnF2–As2O3–TeO2: NiO glass system. J. Non Cryst. Solids 357, 1193–1202 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    X. Du, L. Zhang, G. Dong, K. Sharafudeen, J. Wen, D. Chen, Q. Qian, J. Qiu, Coloration and nonlinear optical properties of ZTe quantum dots in ZnO–TeO2–P2O5 glasses. J. Am. Ceram. Soc. 97, 185–188 (2014)CrossRefGoogle Scholar
  22. 22.
    L.D. Bogomolova, V.A. Zhachkin, T.K. Pavlushkina, Development of green light filters based on high-resistance oxide glasses colored by transition elements. Glass Ceram. 69, 50–54 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Souri, S.A. Salehizadeh, Effect of NiO content on the optical band gap, refractive index, and density of TeO2–V2O5–NiO glasses. J. Mater. Sci. 44, 5800–5805 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Ahmed, A.F. Abbas, Optical absorption characteristics of Ni2+ in mixed-alkali borate glasses. J. Am. Ceram. Soc. 66, 434–439 (1983)CrossRefGoogle Scholar
  25. 25.
    E.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016)CrossRefGoogle Scholar
  26. 26.
    S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factor for heavy metal oxide glasses: a radiation shield. J. Korea Phys. Soc. 59, 2039–2042 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    A. Aşkın, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kaçal, Investigation of the gamma ray shielding parameters of (100–x)[0.5Li2O–0.1B2O3–0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes. J. Non Cryst. Solids 521, 119489 (2019)ADSCrossRefGoogle Scholar
  29. 29.
    M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. J. Non Cryst. Solids 487, 53–59 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: part 2. J. Non Cryst. Solids 474, 16–23 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys Comp. 695, 3191–3197 (2017)CrossRefGoogle Scholar
  32. 32.
    M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54, 408–415 (2016)CrossRefGoogle Scholar
  33. 33.
    Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124, 832 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, ZnO–B2O3–PbO glasses: synthesis and radiation shielding characterization. Phys B 548, 20–26 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses. J. Non Cryst. Solids 509, 99–105 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3–PbO2–Bi2O3 glasses. Compos. B 172, 218–225 (2019)CrossRefGoogle Scholar
  38. 38.
    O.A. Zamyatin, M.F. Churbanov, J.A. Medvedeva, S.A. Gavrin, E.V. Zamyatina, A.D. Plekhovich, Glass-forming region and optical properties of the TeO2–ZnO–NiO system. J. Non Cryst. Solids 479, 29–41 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. A 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    L. Gerward, N. Guilbert, K.B. Jensen, H. Lerving, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 74, 653–654 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    R. El-Mallawany, M.D. Abdalla, I.A. Ahmed, New tellurite glasses, optical properties. Mater. Chem. Phys 109, 291–296 (2008)CrossRefGoogle Scholar
  43. 43.
    E.A. Moelwyn-Hughes, Physical Chemistry (Pergamon, London, 1961)Google Scholar
  44. 44.
    R. El-Mallawany, Optical properties of tellurite glasses. J. Appl. Phys. 27, 1774–1777 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Res. Phys. 8, 16–25 (2018)Google Scholar
  46. 46.
    Y.S. Rammah, A.S. Abouhaswa, A.H. Salama, R. El-Mallawany, Optical, magnetic characterization, and gamma-ray interactions for borate glasses using XCOM program. J. Theor. Appl. Phys. 13, 155–164 (2019)ADSCrossRefGoogle Scholar
  47. 47.
    X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 392, 132–136 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4, 25–35 (2012)Google Scholar
  49. 49.
    M.M. Wakkad, EKh Shokr, S.H. Mohamed, Optical and calorimetric studies of Ge–Sb–Se glasses. J. Cryst. Solids 265, 157–166 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karataş, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 782, 315–322 (2019)CrossRefGoogle Scholar
  51. 51.
    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)CrossRefGoogle Scholar
  52. 52.
    P. Fuochi, U. Corda, M. Lavalle, A. Kovacs, M. Baranyai, A. Mejri, K. Farah, Dosimetric properties of gamma and electron-irradiated commercial window glasses. Nukleonika 54, 39–43 (2009)Google Scholar
  53. 53.
    M.I. Sayyed, F. Akman, I.H. Gecibesler, H.O. Tekin, Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. Nucl. Sci. Technol. 29, 144 (2018)CrossRefGoogle Scholar
  54. 54.
    O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 51, 853–859 (2019)CrossRefGoogle Scholar
  55. 55.
    M.I. Sayyed, Investigation of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94, 1133–1137 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non Cryst. Solids 404, 167–173 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 367–377 (2019)ADSCrossRefGoogle Scholar
  58. 58.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSakarya UniversitySakaryaTurkey
  2. 2.Physics Department, Faculty of ScienceMenoufia UniversityShebin El KoomEgypt

Personalised recommendations