Applied Physics A

, 125:676 | Cite as

The effect of substitution of Cr impurities at the In sites on the structural, electronic and magnetic properties of InSb: a DFT study within mBJ potential

  • Abdelhak Laroussi
  • Mohamed BerberEmail author
  • Bendouma DoumiEmail author
  • Allel MokaddemEmail author
  • Hamza Abid
  • Abdelkader Boudali
  • Hocine Bahloul
  • Hayat Moujri


In this work, we have investigated the structural, electronic and magnetic properties of In1xCrxSb alloys in zinc blende at concentrations x = 0.125, 0.25, 0.50, 0.75, 0.875 and 1. We have performed our calculations by the use of first-principle methods based on spin-polarized density functional theory, where the electronic exchange–correlation potential is treated by the generalized gradient approximation GGA-WC and the improved TB-mBJ approach. The calculated structural parameters of InSb are in good agreement with the available theoretical and experimental data. The ternary In1xCrxSb alloys show half-metallic ferromagnetic behavior with a spin polarization of 100% at the Fermi level. The total magnetic moments are 3 μB for all compounds and the interaction is antiferromagnetic between Cr–Sb and Sb–In sites. These materials are half-metallic ferromagnets, and they can be potential candidates for spintronic applications.



  1. 1.
    G.E. Uhlenbeck, S. Goudsmit, Spinning electrons and the structure of spectra. Nature 117, 264–265 (1926)ADSGoogle Scholar
  2. 2.
    A. Fert, J. Barnaś, Magnetoresistance oscillations due to charging effects in double ferromagnetic tunnel junctions. Phys. Rev. Lett. 80, 1058–1061 (1998)ADSGoogle Scholar
  3. 3.
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996)ADSGoogle Scholar
  4. 4.
    H. Munekata, H. Ohno, S. Molnar, A. Segmüller, L.L. Chang, L. Esaki, Diluted magnetic III–V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989)ADSGoogle Scholar
  5. 5.
    H. Ohno, Properties of ferromagnetic III–V semiconductors. J. Magn. Magn. Mater. 200, 110–129 (1999)ADSGoogle Scholar
  6. 6.
    M. Berber, B. Doumi, A. Mokaddem, Y. Mogulkoc, A. Sayede, A. Tadjer, First-principle predictions of electronic properties and half-metallic ferromagnetism in vanadium-doped rock-salt SrO. J. Electron. Mater. 47, 449–456 (2018)ADSGoogle Scholar
  7. 7.
    M. Berber, B. Doumi, A. Mokaddem, Y. Mogulkoc, A. Sayede, A. Tadjer, Investigation of electronic structure and half-metallic ferromagnetic behavior with large half-metallic gap in Sr1− xVxO. J. Comput. Electron. 16, 542–547 (2017)Google Scholar
  8. 8.
    G. Rahman, S. Cho, S.C. Hong, Half-metallic ferromagnetism of Cr doped AlSb: a first principles study. Phys. Stat. Sol. (b). 244, 4435 (2007)ADSGoogle Scholar
  9. 9.
    K. Berriah, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer, João Pedro Araújo: theoretical investigation of electronic performance, half-metallicity and magnetic properties of Cr-substituted BaTe. J. Comput. Electron. (2018). CrossRefGoogle Scholar
  10. 10.
    H. Bahloul, A. Mokaddem, B. Doumi, M. Berber, A. Boudali, Electronic structures and ferromagnetic properties of 3d (Cr)-doped base barium selenide. J. Supercond. Novel Magn. (2018). CrossRefGoogle Scholar
  11. 11.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)ADSMathSciNetGoogle Scholar
  12. 12.
    Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B. 73(235116), 1–6 (2006)Google Scholar
  13. 13.
    Fabien Tran, Peter Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(226401), 1–4 (2009)Google Scholar
  14. 14.
    P. Blaha, K. Schwarz, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)ADSzbMATHGoogle Scholar
  15. 15.
    O. Yassin, Electronic and optical properties of Zn0.75Cd0.25S1−zSez first-principles calculations based on the Tran–Blaha modified Becke–Johnson potential. Optik Int. J. Light Electron. Optics. 127, 1817–1821 (2016)Google Scholar
  16. 16.
    N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B.U. Haq, S. Goumri-Said, Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III–V arsenides. Semicond. Sci. Technol. 28(105015), 1–13 (2013)Google Scholar
  17. 17.
    B.U. Haq, R. Ahmed, F.E.H. Hassan, R. Khenata, M.K. Kasmin, S. Goumri-Said, Mutual alloying of XAs (X = Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications. Sol. Energy. 100, 1–8 (2014)ADSGoogle Scholar
  18. 18.
    Shuai-Wei Fan, Zhu Wang, Lu Guang-Duo, Wei-Wei Ling, Boron: an effective dopant for aluminum phosphide. EPL 122, 67007 (2018)ADSGoogle Scholar
  19. 19.
    Yong-Hong Zhao, Yong-Feng Li, Yong Liu, Half-metallic p-electron ferromagnetism in alkaline earth doped AlAs: a first-principles calculation. Appl. Phys. Lett. 100, 092407 (2012)ADSGoogle Scholar
  20. 20.
    Gul Rehman et al., Electronic band structures of the highly desirable III–V semiconductors: TB-mBJ DFT studies. J. Electron. Mater. 45, 3314 (2016)ADSGoogle Scholar
  21. 21.
    F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke-Johnson exchange potential. J. Phys. Condens. Matter. 19(196208), 1–8 (2007)Google Scholar
  22. 22.
    T.S. Liu, E.A. Peretti, Lattice Parameter of InSb. JOM 3(9), 791–791 (1951)Google Scholar
  23. 23.
    JW Orton 2009 Semiconductors and the information revolution: magic crystals that made it happen Academic Press CambridgeGoogle Scholar
  24. 24.
    F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)ADSzbMATHGoogle Scholar
  25. 25.
    L. Vegard, Formation of mixed crystals by solid-state contact. J. Phys. 5(5), 393–395 (1921)ADSGoogle Scholar
  26. 26.
    P. Reunchan, N. Umezawa, S. Ouyang, J. Ye, Mechanism of photocatalytic activities in Cr-doped SrTiO3 under visible-light irradiation: an insight from hybrid density-functional calculations. Phys. Chem. Chem. Phys. 14, 1876–1880 (2012)Google Scholar
  27. 27.
    Y. Liu, W. Zhou, P. Wu, Electronic structure and optical properties of Ta-doped and (Ta, N)-codoped SrTiO3 from hybrid functional calculations. J. Appl. Phys. 121(075102), 1–7 (2017)Google Scholar
  28. 28.
    J. Bai, J.-M. Raulot, Y. Zhang, C. Esling, X. Zhao, L. Zuo, The effects of alloying element Co on Ni–Cr–Ga ferromagnetic shape memory alloys from first-principles calculations. Appl. Phys. Lett. 98(164103), 1–3 (2011)Google Scholar
  29. 29.
    B. Doumi, A. Mokaddem, M. Ishak-Boushaki, D. Bensaid, First-principle investigation of magnetic and electronic properties of vanadium- and chromium-doped cubic aluminum phosphide. Sci. Semicond. Process. 32, 166–171 (2015)Google Scholar
  30. 30.
    G.Y. Gao, K.L. Yao, E. Şaşıoğlu, L.M. Sandratskii, Z.L. Liu, J.L. Jiang, Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B 75, 1–7 (2007)Google Scholar
  31. 31.
    B. Doumi, A. Mokaddem, F. Dahmane, A. Sayede, A. Tadjer, A novel theoretical design of electronic structure and half-metallic ferromagnetism in the 3d (V)-doped rock-salts SrS, SrSe, and SrTe for spintronics. RSC Adv. 5, 92328–92334 (2015)Google Scholar
  32. 32.
    Z. Charifi, Dj. Guendouz, H. Baaziz, F. Soyalp and B. Hamad: Ab-initio investigations of the structural, electronic, magnetic and mechanical properties of CrX (X=As, Sb, Se, and Te) transition metal pnictides and chalcogenides. Phys. Scr. 94 015701 (2019).ADSGoogle Scholar
  33. 33.
    M. Shirai, Possible half-metallic ferromagnetism in zinc blende CrSb and CrAs. J. Appl. Phys. 93, 6844 (2003)ADSGoogle Scholar
  34. 34.
    B.-G. Liu, Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B 67, 172411 (2003)ADSGoogle Scholar
  35. 35.
    O. Madelung (ed.), Semiconductors: data handbook (Springer, Berlin, 2004)Google Scholar
  36. 36.
    L. Kahal, A. Zaoui, M. Ferhat, Magnetic properties of CrSb: a first-principle study. J. Appl. Phys. 101, 093912 (2007)ADSGoogle Scholar
  37. 37.
    Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)ADSGoogle Scholar
  38. 38.
    S. Sanvito, P. Ordejon, N.A. Hill, First-principles study of the origin and nature of ferromagnetism in Ga1-xMnxAs. Phys. Rev. B. 63, 165206 (2001)ADSGoogle Scholar
  39. 39.
    H. Raebiger, A. Ayuela, R.M. Nieminen, Intrinsic hole localization mechanism in magnetic semiconductors. J. Phys. Condens. Matter. 16, L457–L462 (2004)ADSGoogle Scholar
  40. 40.
    S. Massidda, A. Continenza, A.J. Freeman, Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb. Phys. Rev. B. 41, 12079–12085 (1990)ADSGoogle Scholar
  41. 41.
    W. A. Harrison: Electronic Structure and the Properties of Solids. Freeman, San Francisco. 157 (1980)Google Scholar
  42. 42.
    R. Mohammad, S. Katircioglu, M. El-Hasan, The electronic band structure of InN, InAs and InSb compounds. J. Mater. Sci. 43, 2935 (2008)ADSGoogle Scholar
  43. 43.
    U.P. Verma, N. Devi, S. Sharma, P. Jensen, Spin-polarized first-principles study of ferromagnetism in zinc-blende In1 xMnxSb. Eur. Phys. J. B 81, 381–386 (2011)ADSGoogle Scholar
  44. 44.
    James R. Chelikowsky, Marvin L. Cohen, Nonlocal pseudo potential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B 14, 556 (1976)ADSGoogle Scholar
  45. 45.
    Satta A, Fiorentini V, Bosin A, Meloni F, Vanderbilt D (1996) In: Dupuis RD, Edmond JA, Ponce F, Nakamura S (eds) Gallium nitride and related compounds. MRS symposia proceedings, no. 395. Materials Research Society, Pittsburgh, p 515Google Scholar
  46. 46.
    Xie WH, Xu YQ, Liu BG, Pettifor DG, Half-Metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett. 91, 219901 (2003)ADSGoogle Scholar
  47. 47.
    Iosif Galanakis, Phivos Mavropoulos, Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Physical Review B 67, 104417 (2003)ADSGoogle Scholar
  48. 48.
    R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Physico-Chemical StudiesUniversity of SaidaSaidaAlgeria
  2. 2.Centre Universitaire Nour Bachir El-BayadhEl BayadhAlgérie
  3. 3.Laboratoire d’Instrumentation et Matériaux AvancésCentre Universitaire Nour Bachir El-BayadhEl-BayadhAlgérie
  4. 4.Faculty of Sciences, Department of PhysicsDr. Tahar Moulay University of SaidaSaidaAlgeria
  5. 5.Applied Materials Laboratory, Research CenterSidi Bel-Abbès Djillali Liabes UniversitySidi Bel-AbbèsAlgeria
  6. 6.Renewable Energy Laboratory and Dynamic Systems, Faculté Des Sciences Ain-ChockUniversité Hassan II de CasablancaCasablancaMorocco

Personalised recommendations