Advertisement

Applied Physics A

, 125:663 | Cite as

Effect of defects on mechanical properties of novel hybrid graphene-h-BN/copper layered nanostructures

  • Wenjuan Yao
  • Lei FanEmail author
Article
  • 53 Downloads

Abstract

The geometric imperfections (circular and square nanohole) were created in different regions of graphene/h-BN heterostructure. Defective heterostructures were used as a reinforcing material for copper (defective G/h-BN@Cu). The mechanical properties of defective G/h-BN@Cu were studied, and the effects of defect size and position on mechanical properties were studied by molecular dynamics. The results showed that mechanical properties of the defective G/h-BN@Cu nanostructure decrease with the increase of the diameter of the nanohole. The effects of nanohole on the stress and strain of the G/h-BN@Cu nanostructures are much higher than Young's modulus. The three mechanical values of G/h-BN@Cu nanostructures in the presence of nanoholes change considerably and do not follow the general trends. When the nanohole is created at h-BN region, a greater reduction of mechanical properties is at this location, relative to other positions. The adverse effect of circular defects on mechanical properties of G/h-BN@Cu nanostructures is lower than that of square defects.

Notes

Acknowledgements

This work was supported by a National Natural Science Foundation of China (11572186).

Compliance with ethical standards

Conflict of interest

The author declare that they have no conflict of interest.

References

  1. 1.
    L. Zheng, M. Lulu, S. Gang et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119–124 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    A. Mishchenko, J. Tu, Y. Cao et al., Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    C. Woods, L. Britnell, A. Eckmann et al., Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014)CrossRefGoogle Scholar
  4. 4.
    A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Novoselov, A. Mishchenko, A. Carvalho et al., 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Withers, O. Del Pozo-Zamudio, A. Mishchenko et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lee, J.R. Wallbank, P. Gallagher et al., Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    G. Argentero, A. Mittelberger, M.R.A. Monazam et al., Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure. Nano Lett. 17, 1409–1416 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    L. Ci, L. Song, C. Jin et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M. Yankowitz, J. Xue, D. Cormode et al., Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Yankowitz, J. Jung, E. Laksono et al., Dean dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Dong, C. Wu, C. Zhang et al., Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. NPJ Comput. Mater. 5, 26 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    Y.J. Mai, F.X. Chen, W.Q. Lian et al., Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. J. Alloys Compd. 756, 1–7 (2018)CrossRefGoogle Scholar
  14. 14.
    L. Jiapeng, X. Dingbang, T. Zhanqiu et al., Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminated composites. Mater. Sci. Eng. 729, 452–457 (2018)CrossRefGoogle Scholar
  15. 15.
    W. Hu, Z. ZhaoHui, H. ZhengYang et al., Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes. Mater. Sci. Eng. 715, 163–173 (2018)CrossRefGoogle Scholar
  16. 16.
    D.B. Xiong, M. Cao, Q. Guo et al., Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening–toughening of metal matrix composite. ACS Nano 9, 6934–6943 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, C. Shi, E. Liu et al., Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale 9, 11929–11938 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Chen, X. Zhang, E. Liu et al., Fabrication of in-situ grown graphene reinforced Cu matrix composites. Sci. Rep. 6, 19363 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A. Giacomo, M. Andreas, R.A.M. Mohammad et al., Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure. Nano Lett. 17, 1409–1416 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Guangyuan, W. Tianru, Y. Peng et al., Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu–Ni alloy. Adv. Sci. 4, 1700076 (2017)CrossRefGoogle Scholar
  21. 21.
    E.E. Kasra, S. Sadegh, J. Maisam, The mechanical design of hybrid graphene/boron nitride nanotransistors: geometry and interface effects. Solid State Commun. 270, 82–86 (2018)CrossRefGoogle Scholar
  22. 22.
    E.E. Kasra, S. Sadegh, J. Maisam, Studying the effects of longitudinal and transverse defects on the failure of hybrid grapheme–boron nitride sheets: a molecular dynamics simulation. Physica E 104, 71–81 (2018)CrossRefGoogle Scholar
  23. 23.
    C. Sevik, A. Kinaci, J.B. Haskins et al., Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kınacı, J.B. Haskins, C. Sevik, T. Çağın, Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    E.E. Kasra, S. Sadegh, J. Maisam, Mechanical properties of defective hybrid graphene–boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018)CrossRefGoogle Scholar
  26. 26.
    K. Duan, F.L. Zhu, K. Tang et al., Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput. Mater. Sci. 117, 294–299 (2016)CrossRefGoogle Scholar
  27. 27.
    X.Y. Liu, F.C. Wang, H.A. Wu et al., Strengthening metal nanolaminates under shock compressing through dual effect of strong and weak graphene interface. Appl. Phys. Lett. 104(23), 231901 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    X.Y. Liu, F.C. Wang, W.Q. Wang et al., Interfacial strengthening and self-healing effect in graphene–copper nanolayered composites under shear deformation. Carbon 107, 680–688 (2016)CrossRefGoogle Scholar
  29. 29.
    H.J. Hwang, W.Y. Choi, J.W. Kang et al., Molecular dynamics simulations of nanomemory element based on boron–nitride nanotube-to-peapod transition. Comput. Mater. Sci. 33, 317–324 (2005)CrossRefGoogle Scholar
  30. 30.
    Q.N. Guo, X.D. Yue, S.E. Yang et al., Tensile properties of ultrathin copper films and their temperature dependence. Comput. Mater. Sci. 50, 319–330 (2010)CrossRefGoogle Scholar
  31. 31.
    H.A. Wu, Molecular dynamics study of the mechanics of metal nanowires at finite temperature. Eur. J. Mech. A/Solids 25, 370–377 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    A. Bosak, J. Serrano, M. Krisch et al., Elasticity of hexagonal boron nitride: inelastic X-ray scattering measurements. Phys. Rev. B 73, 041402 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Y. He, F. Huang, H. Li et al., Tensile mechanical properties of nano-layered copper/graphene composite. Physica E 87, 233–236 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    W. Zhao, S.M. Kozlov, O. Höfert et al., Graphene on Ni (111) coexistence of different surface structures. J. Phys. Chem. Lett. 2(7), 759–764 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Civil EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations