Applied Physics A

, 125:670 | Cite as

A novel fabrication of [Fe(HB(pz)3)2]@MIL-101 hybrid material via diffusion and the lower temperature shift on its spin transition behavior

  • Tian ZhaoEmail author
  • Ming Dong
  • Yi Zhao
Rapid communication


[Fe(HB(pz)3)2], a well-studied spin-crossover (SCO) complex, has been entrapped in NH2-MIL-101(Al) metal–organic framework (MOF) via gas diffusion method. [Fe(HB(pz)3)2] would sublimate when temperature exceeds 100 °C, especially at low pressure. Thus, in the selected condition, [Fe(HB(pz)3)2] molecules can be sublimated to a gas phase and diffused into the pores of NH2-MIL-101(Al), which yield [Fe(HB(pz)3)2]@MIL-101 hybrid materials. The identity of composites, with a loading of iron complex at ~ 8 wt%, was characterized by X-ray diffraction and spectroscopic attestation. The hybrid materials demonstrate a gentle spin transition curve from 300 to 400 K, which is different from the SCO behavior of [Fe(HB(pz)3)2]. And for the pure [Fe(HB(pz)3)2] sample at 400 K, only 60% of Fe(II) is in HS, while in hybrid samples, HS state is complete. This interesting phenomenon might indicate that the spin transition in the hybrid sample can be triggered at lower temperature. The composite samples were thoroughly studied by X-ray diffraction, IR spectroscopy, atom absorption spectroscopy, nitrogen physisorption, and magnetic measurements. Thereby, a novel MOF-based material with isolated SCO units is proposed, which demonstrate a salient ‘matrix-effect’ on spin-crossover behavior of [Fe(HB(pz)3)2].



The work was supported by the National Natural Science Foundation of China (51802094), the Science and Technology Program of Hunan Province, China (2018RS3084), the Natural Science Foundation of Hunan Province (2018JJ3122) and the Science Research Project of Hunan Provincial Department of Education (18B294).


  1. 1.
    J. Hrudka, H. Phan, J. Lengyel, A. Rogachev, M. Shatruk, Inorg. Chem. 57(9), 5183–5193 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Ondo, T. Ishida, Crystals 8, 155 (2018)CrossRefGoogle Scholar
  3. 3.
    E. Burzuri, A. Garci-Fuente, V. Garcia-Suarez, K. Kumar, M. Ruben, J. Ferrer, H. van der Zant, Nanoscale 10, 7905–7911 (2018)CrossRefGoogle Scholar
  4. 4.
    V. da Vieira, I. Gama, L. Santos, N. Pereira, J. Bandeira, Waerenborgh. CrystEngComm 20, 2465–2475 (2018)CrossRefGoogle Scholar
  5. 5.
    J.A. Wolny, H. Paulsen, A. Trautwein, V. Schünemann, Coord. Chem. Rev. 253, 2423–2431 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Kepenekian, J. Costa, B. Guennic, P. Maldivi, S. Bonnet, J. Reedijk, P. Gamez, V. Robert, Inorg. Chem. 49, 11057–11061 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Cavallini, I. Bergenti, S. Milita, G. Ruani, I. Salitros, Z. Qu, R. Chandrasekar, M. Ruben, Angew. Chem. Int. Ed. 47, 8596–8600 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Cuéllar, A. Lapresta-Fernández, J. Herrera, A. Salinas-Castillo, M. del Carmen Pegalajar, S. Titos-Padilla, E. Colacio, L. Capitán-Vallvey, Sens. Actuators B 208,180–187 (2015)Google Scholar
  9. 9.
    C.M. Jureschi, J. Linares, A. Rotaru, M. Ritti, M. Parlier, M. Dîrtu, Y. Wolff, Y. Garcia, Sensors 15, 2388–2398 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Janiak, T. Scharmann, J. Green, R. Parkin, M. Kolm, E. Riedel, W. Mickler, J. Elguero, R. Claramunt, D. Sanz, Chem. Eur. J.2, 992–1000 (1996)Google Scholar
  11. 11.
    S. Zamponi, G. Gambini, P. Conti, G. Lobbia, R. Marassi, M. Berrettoni, B. Cecchi, Polyhedron 14, 1929–1935 (1995)CrossRefGoogle Scholar
  12. 12.
    S. Calogero, G. Lobbia, P. Cecchi, G. Valle, J. Friedl, Polyhedron 13, 87–97 (1994)CrossRefGoogle Scholar
  13. 13.
    Y. Sohrin, H. Kokusen, M. Matsui, Inorg. Chem. 34, 3928–3934 (1995)CrossRefGoogle Scholar
  14. 14.
    F. Grandjean, G. Long, B. Hutchinson, L. Ohlhausen, P. Neill, J. Holcomb, Inorg. Chem. 28, 4406–4414 (1989)CrossRefGoogle Scholar
  15. 15.
    L. Salmon, G. Molnár, S. Cobo, P. Oulié, M. Etienne, T. Mahfoud, P. Demont, A. Eguchi, H. Watanabe, K. Tanaka, A. Bousseksou, New J. Chem. 33, 1283–1289 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Qiu, L. Gu, X. Sun, D. Ren, Z. Gu, Z. Li, RSC Adv. 4, 61313–61319 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Gütlich, A. Gaspar, Y. Garcia, Beilstein J. Org. Chem. 9, 342–391 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Tissot, L. Rechignat, A. Bousseksoub, M. Boillot, J. Mater. Chem. 22, 3411–3419 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Qiu, D. Ren, L. Gu, X. Sun, T. Qu, Z. Gu, Z. Li, RSC Adv. 4, 31323–31327 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Dugay, M. Marqués, T. Kozlova, H. Zandbergen, E. Coronado, H. van der Zant, Adv. Mater. 27, 1288–1293 (2015)CrossRefGoogle Scholar
  21. 21.
    V. Martinez, I. Boldog, A. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, J. Real, Chem. Mater. 22, 4271–4281 (2010)CrossRefGoogle Scholar
  22. 22.
    L. Molnár, W. Salmon, F. Nicolazzi, A. Terkib, J. Bousseksou, Mater. Chem. C 2, 1360–1366 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Zhao, I. Boldog, C. Janiak, Y. Chin, J. Inorg. Chem. 33, 1330–1338 (2017)Google Scholar
  24. 24.
    A. Abherve, T. Grancha, J. Ferrando-Soria, M. Clemente-Leon, E. Coronado, J. Waerenborgh, F. Lloret, E. Pardo, Chem. Commun. 52, 7360–7363 (2016)CrossRefGoogle Scholar
  25. 25.
    T. Zhao, I. Boldog, V. Spasojevic, A. Rotaru, Y. Garcia, C. Janiak, J. Mater. Chem. C 4, 6588–6601 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Trofimenko, J. Am. Chem. Soc. 89, 3170–3177 (1967)CrossRefGoogle Scholar
  27. 27.
    T. Zhao, L. Yang, P. Feng, I. Gruber, C. Janiak, Y. Liu, Inorg. Chim. Acta 471, 440–445 (2018)CrossRefGoogle Scholar
  28. 28.
    T. Zhao, S. Li, L. Shen, Y. Wang, X. Yang, Inorg. Chem. Commun. 96, 47–51 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S. Proch, J. Herrmannsdçrfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, J. Senker, Chem. Eur. J. 14, 8204–8212 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Hermes, M. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. Fischer, Angew. Chem. Int. Ed. 44, 6237–6241 (2005)CrossRefGoogle Scholar
  31. 31.
    G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309, 2040–2042 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    K. Brandenburg, Diamond (Version 3.2), Crystal and Molecular Structure Visualization, Crystal Impact-K (Brandenburg & H. Putz Gbr, Bonn, 2009)Google Scholar
  33. 33.
    T. Delgado, A. Tissot, C. Besnard, L. Guénée, P. Pattison, A. Hauser, Chem. Eur. J. 21, 3664–3670 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Naggert, A. Bannwarth, S. von Chemnitz, T. Hofe, E. Quandt, F. Tuczek, Dalton Trans. 40, 6364–6366 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Packaging and Materials EngineeringHunan University of TechnologyZhuzhouChina

Personalised recommendations