Advertisement

Applied Physics A

, 125:659 | Cite as

Various pulsed laser deposition methods for preparation of silver-sensitised glass and paper substrates for surface-enhanced Raman spectroscopy

  • T. M. Khan
  • J. G. LunneyEmail author
  • D. O’Rourke
  • M.-C. Meyer
  • J. R. Creel
  • K. E. Siewierska
Article
  • 48 Downloads

Abstract

Silver nanoparticle films on glass and paper were prepared using vacuum pulsed laser deposition, and various methods of atmospheric pulsed laser deposition, where ablated material forms a nanoparticle aerosol near the target and is delivered in a gas flow to the substrate. The performance of the films for surface-enhanced Raman spectroscopy (SERS) was investigated using a 10–4 M aqueous solution of rhodamine 6G organic dye. The SERS sensitivity was quantified in terms of the apparent enhancement factor and the signal-to-noise ratio. For the films made by supersonic atmospheric pulsed laser deposition, the apparent enhancement factor was found to be 15,000, which is 150 times higher than the value for a commercial silver nanoparticle paper-based substrate. This study demonstrates the utility of atmospheric pulsed laser deposition for the fabrication of noble metal nanoparticle films, and offers new approaches to tailoring the particle morphology for high SERS performance.

Notes

Acknowledgements

This research was supported by Science Foundation Ireland under Investigator Project 12/IP/1662, and Irish Research Council under Grant GOIPG/2016/308. We acknowledge the help of Ms Megan Canavan in making the SEM images.

References

  1. 1.
    M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRefGoogle Scholar
  2. 2.
    C. D’Andrea, M.J. Lo Faro, G. Bertino, P.M. Ossi, F. Neri, S. Trusso, P. Musumeci, M. Galli, N. Cioffi, A. Irrera, F. Priolo, B. Fazio, Decoration of silicon nanowires with silver nanoparticles for ultrasensitive surface enhanced Raman scattering. Nanotechnology 27, 375603 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. van Duyne, SERS: materials, applications, and the future. Mater. Today 15, 16–25 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Fan, G.F.S. Andrade, A.G. Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 693, 7–25 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241 (1998)CrossRefGoogle Scholar
  7. 7.
    X. Zou, S. Dong, Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. J. Phys. Chem. B 110, 21545–21550 (2006)CrossRefGoogle Scholar
  8. 8.
    S.S.R. Dasary, A.K. Singh, D. Senapati, H. Yu, P.C. Ray, Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 131, 13806–13812 (2009)CrossRefGoogle Scholar
  9. 9.
    J.J. Gough, K.E. Siewerska, S. Mehigan, D. Hanlon, C. Backes, Z. Gholamvand, B.M. Szydłowska, W.J. Blau, E. McCabe, A.L. Bradley, Influence of graphene oxide/Ag nanoparticle composites on the fluorescence properties of organic dyes. J. Nanosci. Nanotechnol. 17, 8901–8911 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Kneipp, Chemical contribution to SERS enhancement: an experimental study on a series of polymethine dyes on silver nanoaggregates. J. Phys. Chem. C 120, 21076–21081 (2016)CrossRefGoogle Scholar
  11. 11.
    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)ADSCrossRefGoogle Scholar
  12. 12.
    I. Mirza, G. O’Connell, J.J. Wang, J.G. Lunney, Comparison of nanosecond and femtosecond pulsed laser deposition of silver nanoparticle films. Nanotechnology 25, 265301 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    R.W. Eason, D.B. Chrisey (eds.), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley-Interscience, Hoboken, 2007)Google Scholar
  14. 14.
    R. Tantra, R.J.C. Brown, M.J.T. Milton, Strategy to improve the reproducibility of colloidal SERS. J. Raman Spectrosc. 38, 1469–1479 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    M.A. de Jesús, K.S. Giesfeldt, M.J. Sepaniak, Improving the analytical figures of merit of SERS for the analysis of model environmental pollutants. J. Raman Spectrosc. 35, 895–904 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    C.A. Smyth, I. Mirza, J.G. Lunney, E.M. McCabe, Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition. Appl. Surf. Sci. 264, 31–35 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    T.E. Itina, A. Voloshko, Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure. Appl. Phys. B 113, 473–478 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    N. Nedyalkov, A. Nikolov, P. Atanasov, M. Alexandrov, M. Terakawa, H. Shimizu, Nanostructured Au film produced by pulsed laser deposition in air at atmospheric pressure. Opt. Laser Technol. 64, 41–45 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    R. McCann, C. Hughes, K. Bagga, A. Stalcup, M. Vázquez, D. Brabazon, Pulsed laser deposition of plasmonic nanostructured gold on flexible transparent polymers at atmospheric pressure. J. Phys. D Appl. Phys. 50, 245303 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    T.M. Khan, M.A. Mujawar, K.E. Siewerska, A. Pokle, T. Donnelly, N. McEvoy, G.S. Duesberg, J.G. Lunney, Atmospheric pulsed laser deposition and thermal annealing of plasmonic silver nanoparticle films. Nanotechnology 28, 445601 (2017)CrossRefGoogle Scholar
  21. 21.
    T.M. Khan, A. Pokle, J.G. Lunney, Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma. Appl. Phys. A 124, 265301 (2018)Google Scholar
  22. 22.
    Ocean Optics. SERS_Product-Sheet. https://oceanoptics.com/wp-content/uploads/SERS_Product-Sheet.pdf. Accessed 30 July 2018.
  23. 23.
    D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D.G. Fernig, A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV–visible light spectra. Analyst 139, 4855–4861 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsTrinity College Dublin, The University of DublinDublinIreland
  2. 2.Department of Mechanical and Manufacturing EngineeringTrinity College Dublin, The University of DublinDublinIreland

Personalised recommendations