Advertisement

Applied Physics A

, 125:665 | Cite as

Metal-strip approach on junctionless TFET in the presence of positive charge

  • Bandi Venkata ChandanEmail author
  • Kaushal Nigam
  • Sukeshni Tirkey
  • Dheeraj Sharma
Article
  • 49 Downloads

Abstract

In this research, to achieve steep subthreshold slope, high \({I}_\mathrm{{on}}/{I}_\mathrm{{off}}\) ratio and low ambipolarity in TFETs, we have proposed a device which consists of metal strips near drain–channel and source–channel interfaces. The proposed device is named as dual metal-strip charge plasma-based junction-less tunnel FET (DMS-CP-JL-TFET), which will improve the device performance in terms of DC and analog/RF figure of merits (FOMs). The introduction of a metal strip near the drain–channel interface which produces a wider energy gap reduces ambipolarity, while the metal strip near the source–channel interface delivers abruptness at the junction, leading to a better subthreshold slope and higher \({I}_\mathrm{{on}}/{I}_\mathrm{{off}}\) ratio. Also, positive trap charge (PTC) is taken in the simulations, because the proposed devices have shown great improvement in the presence of PTC, which has also been discussed in this work. In supporting our work, we have added the optimization part for metal strips (M1 and M2) in terms of work functions, lengths to achieve better electrical characteristics.

References

  1. 1.
    M.R. William, A.J.A. Gehan, Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRefGoogle Scholar
  2. 2.
    Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Trans. Electron Device Lett. 27(4), 297–300 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    W.Y. Choi, B.-G. Park, J.D. Lee, T.-J.K. Liu, Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    N. Damrongplasit, C. Shin, S.H. Kim, R.A. Vega, T.J.K. Liu, Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M.-H. Chiang, J.-N. Lin, K. Kim, C.-T. Chuang, Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C.L. Royer, F. Mayer, Exhaustive experimental study of tunnel field effect transistors (TFETs): from materials to architecture, in Proc. 10th Inter. Conf. Ultimate Integr. Silicon, pp. 53–56 (2009)Google Scholar
  10. 10.
    U.E. Avci, D.H. Morris, I.A. Young, Tunnel field effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015)CrossRefGoogle Scholar
  11. 11.
    D.B. Abdi, M.J. Kumar, Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2(6), 187–190 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Raad, K. Nigam, D. Sharma, P. Kondekar, Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron. Lett. 52(9), 770–772 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Ghosh, K. Koley, C.K. Sarkar, Impact of the lateral straggle on the analog and RF performance of TFET. Microelectron. Reliab. 55(2), 326–331 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Nigam, P. Kondekar, D. Sharma, DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect transistor. Superlattices Microstruct. 92, 224–231 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    V. Vijayvargiya, S.K. Vishvakarma, Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performances. IEEE Trans. Nanotechnol. 13(5), 978–981 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    W.Y. Choi, W. Lee, Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Jagadesh Kumar, Sindhu Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 16(10), 3285–3290 (2013)CrossRefGoogle Scholar
  18. 18.
    B. Ghosh, M.W. Akram, Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Bandi Venkata Chandan, Sushmitha Dasari, S. Yadav, D. Sharma, Approach to suppress ambipolarity and improve RF and linearity performances on ED-tunnel FET. IET Micro Nano Lett. 13, 684–689 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Boucart, A.M. Ionescu et al., Length scaling of the double gate tunnel FET with a high-K gate dielectric. Solid State Electron. 51, 1500–1507 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    ATLAS Device Simulation Software, Silvaco Int, Santa Clara (2016)Google Scholar
  22. 22.
    C. Shen, L.-T. Yang, G. Samudra, Y.-C. Yeo, A new robust non-local algorithm for band-to-band tunneling simulation and its application to tunnel-FET. Solid State Electron. 57, 23–30 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    P.G.D. Agopian, M.D.V. Martino, S.D. Filho, J.A. Martino, R. Rooyackers, D. Leonelli, C. Claeys, Temperature impact on the tunnel FET off-state current components. Solid State Electron. 78, 141–146 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    W. Shockley, W.T. Read Jr., Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)ADSCrossRefGoogle Scholar
  25. 25.
    S. Tirkey, D. Sharma, D.S. Yadav, S. Yadav et al., Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans. Electron Devices 64, 3943–3950 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    B.V. Chandan, M. Gautami, K. Nigam et al., Impact of a metal-strip on a polarity-based electrically doped TFET for improvement of DC and analog/RF performance. J. Comput. Electron. (2018).  https://doi.org/10.1007/s10825-018-1280-z CrossRefGoogle Scholar
  27. 27.
    B.V. Chandan, K. Nigam, D. Sharma et al., A novel methodology to suppress ambipolarity and improve the electronic characteristics of polarity-based electrically doped tunnel FET. Appl. Phys. A 125, 81 (2019).  https://doi.org/10.1007/s00339-019-2378-2 ADSCrossRefGoogle Scholar
  28. 28.
    Farkhanda Ana, Najeeb-ud-din, Gate work function engineering for deep sub-micron MOSFETs: motivation, features and challenges. IJECT 2, 2230–9543 (2011)Google Scholar
  29. 29.
    R. Lin, Q. Lu, P. Ranade, T.-J. King, C. Hu, An adjustable workfunction technology using Mo gate for CMOS devices. IEEE Electron Device Lett. 23, 49–51 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Pushkar Ranade et al., Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid State Lett. 4(11), G85–G87 (2001)CrossRefGoogle Scholar
  31. 31.
    Q. Zeng, X. Zheng et.al., Deposition of dense SiO\(_2\) thin films for electrical insulation applications by microwave ECR plasma source enhanced RF reactive magnetron sputtering, in International Conference on Measuring Technology and Mechatronics Automation (2010).  https://doi.org/10.1109/ICMTMA.2010.773
  32. 32.
    M.Dennis Hausmann, Esther Kim, Jill Becker, Roy G. Gordon, Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Am. Chem. Soc. 14, 4350–4358 (2002)Google Scholar
  33. 33.
  34. 34.
    R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today. 17(5), 236–246 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Gupta, Kaushal Nigam, S. Pandey, D. Sharma, P.N. Kondekar, Effect of interface trap charges on performance variation of heterogeneous gate dielectric junctionless-TFET. IEEE Trans. Electron Devices 64(11), 4731–4737 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    B. Awadhiya, S. Pandey, Kaushal Nigam, S. Pandey, D. Sharma, P.N. Kondekar, Effect of ITC’s on linearity and distortion performance of junctionless tunnel field effect transistor. Superlattices Microstruct. 111, 293–301 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Qiu, R. Wang, Q. Huang, R. Huang, A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284–1291 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bandi Venkata Chandan
    • 1
    Email author
  • Kaushal Nigam
    • 2
  • Sukeshni Tirkey
    • 3
  • Dheeraj Sharma
    • 1
  1. 1.PDPM-India Institute of Information Technology Design and ManufacturingJabalpurIndia
  2. 2.Jaypee Institute of Information TechnologyNoidaIndia
  3. 3.National Institute of TechnologyRaipurIndia

Personalised recommendations