Applied Physics A

, 125:671 | Cite as

Gamma ray shielding behavior of Li2O-doped PbO–MoO3–B2O3 glass system

  • Atif Mossad Ali
  • M. I. SayyedEmail author
  • M. Rashad
  • Ashok Kumar
  • Ramandeep Kaur
  • A. Aşkın
  • H. Algarni


In this work, five glasses for radiation shielding applications in the composition of (30 + x) PbO–5 MoO3–(25 − x) Li2O–40 B2O3 (where x = 0, 5, 10, 15 and 20 mol%) have been prepared. The density increases from 4.354 to 6.578 g cm−3 and the molar volume decreases from 25.144 to 22.520 cm3 with the replacement of Li2O by PbO. The indirect and direct band gap energies decrease from (2.2870–2.2297) eV and (2.9619–2.8660) eV, respectively, as lead content increases from 30 to 50 mol%. In addition, the refractive index of the samples lies between 2.6214 and 2.6429. Geant4 simulation code has been used to evaluate the gamma photon transmission through the prepared samples. Pb50Li5 sample has lower transmission fraction among the studied glasses. For the 2-cm glass thickness, the transmission fraction of Pb30Li25 sample was found to be 0.433 while at the same thickness the transmission fraction of Pb50Li5 sample is 0.265. At 1173 keV, the HVL values were found to be 1.752 cm for Pb50Li5 and 2.693 cm for Pb30Li25 glasses. At the same photon energy, the MFP values were calculated to be 2.529 cm and 3.886 cm for the Pb50Li5 and Pb30Li25 samples, respectively. Due to the higher Pb content existing in the Pb50Li5 glass, this glass effectively blocks the gamma rays compared to the other samples.



The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P. 2/33/40.


  1. 1.
    A.E. Ersundu, M. Büyükyıldız, M.Ç. Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018)CrossRefGoogle Scholar
  2. 2.
    S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat. Phys. Chem. 138, 75–80 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    N.I. Cherkashina, V.I. Pavlenko, A.V. Noskov, Radiation shielding properties of polyimide composite materials. Radiat. Phys. Chem. 159, 111–117 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Yalcin, B. Aktas, D. Yilmaz, Radiation shielding properties of Cerium oxide and Erbium oxide doped obsidian glass. Radiat. Phys. Chem. 160, 83–88 (2019)CrossRefGoogle Scholar
  6. 6.
    T. Shams, M. Eftekhar, A. Shirani, Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms. Constr. Build. Mater. 182, 35–42 (2018)CrossRefGoogle Scholar
  7. 7.
    N.M. Azreen, R.S.M. Rashid, M. Haniza, Y.L. Voo, Y.H.M. Amran, Radiation shielding of ultra—high-performance concrete with silica sand amang and lead glass. Constr. Build. Mater. 172, 370–377 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Guo-hui, H. Man-li, C. Fan-chao, F. Jun-dong, D. Yao-dong, Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by EB irradiation. Prog. Nucl. Energy 112, 225–232 (2019)CrossRefGoogle Scholar
  9. 9.
    O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kaçal, An extensive investigation on gamma ray shielding features of Pd/Ag based alloys. Nucl. Eng. Technol. 51, 853–859 (2019)CrossRefGoogle Scholar
  10. 10.
    E. Şakar, M. Büyükyıldız, B. Alım, B.C. Şakar, M. Kurudire, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 159, 64–69 (2019)CrossRefGoogle Scholar
  11. 11.
    G. Lakshminarayana, A. Kumar, M.G. Dong, M.I. Sayyed, N.V. Long, M.A. Mahdi, Exploration of gamma radiation shielding features for titanate bismuth borotellurite glasses using relevant software program and Monte Carlo simulation code. J. Noncryst. Solids 481, 65–73 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    A. Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Noncryst. Solids 481, 604–607 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Hassan, F.M. Ebrahim, M.G. Moustafa, Z.M.A. El-Fattah, M.M. El-Okr, Unraveling the hidden Urbach edge and Cr6+ optical transitions in borate glasses. J. Noncryst. Solids 515, 157–164 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    E. Salama, A. Maher, G.M. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead. J. Phys. Chem. Solids 131, 139–147 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Al‐Hadeethi, S.A. Tijani, Radiation interaction parameters of commercial building glasses at energies of interest for potential nuclear accidents. J. Am. Ceram. Soc. 0, 4765–4772 (2019)CrossRefGoogle Scholar
  18. 18.
    N.S. Prabhu, V. Hegde, A. Wagh, M.I. Sayyed, O. Agar, S.D. Kamath, Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. J. Noncryst. Solids 515, 116–124 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    M.G. Dong, M.I. Sayyed, G. Lakshminarayana, M.Ç. Ersundu, A.E. Ersundu, P. Nayar, M.A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Noncryst. Solids 468, 12–16 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M.I. Sayyed, A.A. Ali, H.O. Tekin, Y.S. Rammah, Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program. Appl. Phys. A 125, 445 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behaviour of (20 + x) PbO–10 BaO–10 Na2O–10 MgO–(50 − x) B2O3 glasses. Phys. B Phys. Condens. Matter 552, 110–118 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.J. Bqoor, A.I. Hamdan, M.A. Saleh, M.K.B.A. Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 177, 366–372 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Ichoja, S. Hashim, S.K. Ghoshal, I.H. Hashim, R.S. Omar, Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J. Rare Earths 36, 1264–1271 (2018)CrossRefGoogle Scholar
  24. 24.
    M.H.A. Mhareb, M.A. Almessiere, M.I. Sayyed, Y.S.M. Alajerami, Physical, structural, optical and photons attenuation attributes of lithium-magnesium-borate glasses: role of Tm2O3 doping. Optik 182, 821–831 (2019)ADSCrossRefGoogle Scholar
  25. 25.
    F. Zaman, G. Rooh, N. Srisittipokakun, C. Wongdeeying, H.J. Kim, J. Kaewkhao, Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs. Solid State Sci. 80, 161–169 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    A.M. Abdelghany, Combined DFT, deconvolution analysis for structural investigation of copper-doped lead borate glasses. Open Spectrosc. J. 6, 9–14 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    L. Balachander, G. Ramadevudu, M. Shareefuddin, R. Sayanna, Y.C. Venudhar, IR analysis of borate glasses containing three alkali oxides. Sci. Asia 39, 278–283 (2013)CrossRefGoogle Scholar
  28. 28.
    H.A. ElBatal, A.M. Abdelghany, I.S. Ali, Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma irradiation. J. Noncryst. Solids 358, 820–825 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M. Machida, H. Eckert, FT-IR, FT-Raman and 95 Mo MAS–NMR studies on the structure of ionically conducting glasses in the system AgI–Ag2O–MoO3. Solid State Ion. 107, 255–268 (1998)CrossRefGoogle Scholar
  30. 30.
    FH El Batal, Gamma ray interaction with lithium borate glasses containing WO3. Indian J. Pure Appl. Phys. 47, 471–480 (2009)Google Scholar
  31. 31.
    M.I. Sayyed, A. Aşkın, A.M. Ali, A. Kumar, M. Rashad, A.M. Alshehri, M. Singh, Extensive study of newly developed highly dense transparent PbO–WO3–BaO–Na2O–B2O3 glasses for radiation shielding applications. J Noncryst. Solids 521, 119521 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Ali, M.I. Sayyed, A. Kumar, M. Rashad, A.M. Alshehri, R. Kaur, Optically transparent newly developed glass materials for gamma ray shielding applications. J Noncryst. Solids 521, 119490 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    F. Laariedh, M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, T.B. Badeche, Studies on the structural, optical and radiation shielding properties of (50−x) PbO–10 WO3–10 Na2O–10 MgO–(20 + x) B2O3 glasses. J. Noncryst. Solids 513, 159–166 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J Noncryst. Solids 512, 60–71 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Atif Mossad Ali
    • 1
  • M. I. Sayyed
    • 2
    Email author
  • M. Rashad
    • 2
    • 3
  • Ashok Kumar
    • 4
    • 5
  • Ramandeep Kaur
    • 5
  • A. Aşkın
    • 6
  • H. Algarni
    • 1
  1. 1.Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  4. 4.University CollegePatialaIndia
  5. 5.Department of PhysicsPunjabi UniversityPatialaIndia
  6. 6.Department of Electrical-Electronical Engineering, Faculty of EngineeringMunzur UniversityTunceliTurkey

Personalised recommendations