Advertisement

Applied Physics A

, 125:669 | Cite as

Electrochemical sensor for the detection of lead ions of B-site-doped bismuth titanate perovskite thin film

  • A. Amali Roselin
  • N. AnandhanEmail author
  • G. Gopu
  • I. Joseph Panneer Doss
  • K. P. Ganesan
  • R. Paneer Selvam
  • T. Marimuthu
  • G. Sivakumar
Article
  • 65 Downloads

Abstract

The perovskite thin film was fabricated using cobalt (Co)-doped B-site on bismuth titanate (Bi4Ti3−xCoxO12) on FTO substrate by spin coating technique. The fabricated substrate was annealed at 700 °C and employed as an electrochemical sensor for the detection of lead ions. The obtained device was investigated for their structural, optical and morphological features using X-ray diffraction (XRD), UV–V is spectroscopy (UV), photoluminescence and scanning electron microscopy (SEM). XRD patterns reveal that the grains were orientated along c axis with (117) plane providing decreased crystallite size upon increasing dopant concentrations in BTO. UV–Vis diffusion reflectance spectrum showed that bismuth titanate thin films exhibited good optical transmittance in the visible region. BTO thin films displayed particles are in spherical in shape which was confirmed using SEM. The acquired thin film was employed as an electrochemical sensor for the detection of lead ions. The detection technique was carried out using cyclic voltammetry which delivered high sensitivity. On examining the physical and chemical properties of the obtained product, it can also be further employed as real-time applications.

Notes

Acknowledgements

We gratefully acknowledge the funding and support received from the RUSA-Phase 2.0 Grant sanctioned vide Letter. No. F. 24-51/2014-U, Policy (TNMulti-Gen), Department of Education, Govt. of India. Dt. 09.10.2018. We would like to acknowledge Miss. G. Padmalaya, Department of Electronics and Communication Engineering, SSN College of Engineering and Technology, Kalavakkam, Chennai for providing facility to enhance CV, ESI analysis in this article.

References

  1. 1.
    Y. Wang, H. Zhao, L. Zhang, J. Chen, X. Xing, PbTiO3—based perovskite ferroelectric an and multiferroic thin films. Phys. Chem. Chem. Phys. 19, 17493–17515 (2017)CrossRefGoogle Scholar
  2. 2.
    T. Sahu, B. Behera, Dielectric, electrical and magnetic study of rare-earth doped bismuth ferrite lead titanate. Appl. Phys. A 125, 407 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    G. Naga Bhargavi, A. Khare, Luminescene studies of perovskite structured titanates: a review. Opt. Spectrosc. 6, 902–917 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Komatsu, T. Uchikoshi, H. Itoh, J. Takahashi, Grain orientation of Nd-modified bismuth titanate ceramics by forming at low magnetic field. J. Ceram. Soc. Jpn. 122(1), 58–62 (2014)CrossRefGoogle Scholar
  5. 5.
    M.C. Kao, H.Z. Chen, S.L. Yong, B.N. Chuang, W.W. Jaiang, J.S. Song, S.S. Jhan, J.L. Chiang, L.T. Wu, Effects of tantalum doping on microstructure and ferroelectric properties of Bi4Ti3O12 thin films prepared by a sol–gel method. J. Cryst. Growth 338, 139–142 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    J. Young, C.W. Bark, Structural and optical properties of Fe doped bismuth titanate thin films by RF sputtering. Jpn. J. Appl. Phys. 55, 75–84 (2016)Google Scholar
  7. 7.
    L.F. Gorup, V. Bouquet, S. Députier, V. Dorcet, M. Guilloux-Viry, I.M.G. Santos, A.A. Silva, A.E. Nogueira, A.M. Kubo, E. Longo, E.R. Camargo, Influence of deposition parametes on the structure and microstructure of Bi12TiO20 films obtained by pulsed laser deposition. Ceram. Int. 45(3), 3510–3517 (2018)CrossRefGoogle Scholar
  8. 8.
    N.M. Vehkamaki, T. Hatanpaa, M. Kernell, M. Ritala, M. Lesekela, Atomic layer deposition of ferroelectric bismuth titanate Bi4Ti3O12 thin films. Chem. Mater. 18(16), 3883–3888 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, X. Zhao, N. Zhao, M. Zhang, Optical properties of neodymium substituted bismuth titanate thin film grown by metal-organic solution deposition. J. Mater. Sci. Technol. 26(11), 977–980 (2010)CrossRefGoogle Scholar
  10. 10.
    X. Di, W. Hang, S. He, T. Santhosh Kumar, A. Jao, N. Qin Dinghuabao, Improved ferroelectric and dielectric properties of Sm, La co doped Bi4Ti3O12 multifunctional thin films with orange red emission. J. Mater. Sci. Mater. Electron. 30(4), 13158–131566 (2019)Google Scholar
  11. 11.
    M.C. Kao, H.Z. Chen, S.L. Youg, The microstructure and ferroelectric properties of Sm and Ta doped bismuth titanate thin films. Thin Solid Films 529, 143–146 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Duan, Y. Cui, G. Zhao, X. Li, B. Peng, C. Han, Integration of c-axis oriented Bi3.15Nd0.85Ti2.95Hf0.05O12/La0.67Sr0.33MnO3 ferromagnetic–ferroelectric composite film on Si substrate. Sci. Rep. 7, 11341 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Wong, Environmental Contamination: Health Risks and Ecological Restoration (Taylor and Francis Group, CRC Press, New York, 2012)CrossRefGoogle Scholar
  14. 14.
    G. Padmalaya, B.S. Sreeja, P. Senthil Kumar, M. Arivandhan, Chitosan anchored zinc oxide nanocomposite as modified electrochemical sensor for the detection foCd(II) ions. Desalin. Water Treat. 97, 295–303 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Arruti, I. Fernandez Olmo, A. Irabien, Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabrai region. J.M10 in the Cantabrai region. J. Environ. Monit. 12(7), 1451–1458 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Li, X. Chen, B. Zong, S. Mao, Recent advances in sensitive and rapid mercury determination with graphene-based sensors. J. Mater. Chem. A 7, 6616–6630 (2019)CrossRefGoogle Scholar
  17. 17.
    C. Dincer, R. Bruch, E. Costa Rama, F. Abedul, M.T. Merkoci, A. Manz, Disposable sensors in diagnostics, food and environmetal monitoring. Adv. Mater. 31(30), 1806739 (2019)CrossRefGoogle Scholar
  18. 18.
    M.A. Wederni, S. Kraiem, R. Mnassri, H. Rahmouni, K. Khriouni, Ytterbium doping effects on structural, optical and electrical properties of Bi4Ti3O12 system. Ceram. Int. 44(17), 21893–21903 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Marikani, V. Selvamurugan, G. Mangamma, S. Ravia, R. Krishnasharma, P.V. Chandrasekar, M. Kamrudding, D. Madhavan, A. Iljnas, V. Stankus, Ferroelectric, dielectric, and optical properties of Nd-substituted Bi4Ti3O12 nanoparticles synthesized by sol–gel method. Prog. Nat. Sci. Mater. Int. 26(6), 528–532 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Jeyakumar, S. Thanikaiarasan, B. Natarajan, Role of substrate in electrodeposited coppertelluride thin films. J. Mater. Sci. Mater. Electron. 28, 2538–2544 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Suthar, F. Bhadala, M. Roy, Structural, electrical, thermal and optical properties of YFeO3, prepared by SSR and sol–gel route: a comparative study. Appl. Phys. A 125, 452–460 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    K.P. Ganesan, Electrochemically modified crystal orientation, surface morphology and 4 optical properties using CTAB on Cu2O thin films. Results Phys. 7, 82–86 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    C. Jia, Y. Chen, W.F. Zhang, Optical anisotropy in bismuth titanate: an experimental and theoretical study. J. Appl. Phys. 105, 113108 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    M.K. Gupta, N. Sinha, B. Kumar, Dielectric studies and bandgap tuning of ferroelectric Cr-doped ZnO nanorods. J. Appl. Phys. 112, 014303 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhang, D. Xie, Y. Chen, X. Wu, G. Li, D. Plant, Tuning the Structural and optical properties of bismuth titanate by different Nd substitution content. Integr. Ferroelectr. 133(1), 73–80 (2012)CrossRefGoogle Scholar
  26. 26.
    A.R. Gomez, C.M. Sanchez-Hernandez, I.F. Levin, J.A. Alattore, J.C.A. Huitron, M.E. Sanchez, M. Vergrara, Optical absorption and visible photoluminescence from thin films of silicon phthalocyanine derivatives. Materials 7, 6585–6603 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    P. Gautam, A. Sachdev, S. Singh, R.P. Tandon, Dielectric functions and energy bandgap variation studies of manganese doped Bi3.25La0.75Ti3O12 thinfilms using spectroscopic ellipsometry. J. Alloys Compd. 617, 374–378 (2014)CrossRefGoogle Scholar
  28. 28.
    S.A. Aly, A.A. Akl, Influence of film thickness on optical absorption and energy gap of thermally evaporated Cd0.1Se0.9 thin films. Chalcogenide Lett. 12, 489–496 (2015)Google Scholar
  29. 29.
    M.F.A. Alias, R.M. Aljarrah, H.K.H. Al-Lamy, K.A. Wadem, Investigation on the effect of thickness on the structural and optical properties of nano ZnO films prepared by d.c. magnetron sputtering. IJAEM 2(7), 198–203 (2013)Google Scholar
  30. 30.
    A. Ranjabar, M. Behdani, M. Roknadbadi, Fabrication of bismuth titanate (Bi4Ti3O12) thinfilms: effect of annealing temperature on their structural and optical properties. Sci. Iran. 26(3), 1990–1996 (2019)Google Scholar
  31. 31.
    F. Yakuphanoglu, A. Tataroglu, A. Ahmed Al-Gandhi, R.K. Gupta, Y.A. Turki, Z. Serbecti, S.B. Omran, F. El-Tantawy, Ferroelectric Bi3.25La0.75Ti3O12 photodiode for solar cell applications. Sol. Energy Mater. Sol. Cells 133, 69–75 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    F. Miao, B. Tao, P.K. Chu, Synthesis, microstructure and electronic band structure properties of nanocrystalline neodymium-doped bismuth titanate ferroelectric thin films fabricated by the sol–gel method. Mater. Res. Bull. 61, 238–244 (2015)CrossRefGoogle Scholar
  34. 34.
    M.M. Hafiz, N. El-Kabany, H. Mahfoz, Y.M. Bakier, Determination of optical band gap and optical constants of GexSb40 xSe60 thin films. Int. J. Thin Films Sci. Technol. 4, 179–185 (2015)Google Scholar
  35. 35.
    M. Nikzad, M.R. Khanlary, S. Rafiee, Structural, optical and morphological properties of Cu-doped ZnS thin films synthesized by sol–gel method. Appl. Phys. A 125, 507 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    H. Gu, Z. Hu, Y. Yuan, J. You, W. Zon, The structure and photoluminescence of Bi4Ti3O nanoplates synthesized by hydrothermal method. Colloids Surf. A Physicochem. Eng. Asp. 315, 294 (2008)CrossRefGoogle Scholar
  37. 37.
    M.S. Gudiksen, J. Wang, C.M. Lieber, Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106, 4036–4039 (2002)CrossRefGoogle Scholar
  38. 38.
    A. Amali Roselin, N. Anandhan, V. Dharuman, Deposition of transition metal Mn-doped BTO thin films. J. Mater. Sci. Mater. Electron. 34, 109–113 (2018)Google Scholar
  39. 39.
    G. Padmalaya, B.S. Sreeja, P. Dinesh Kumar, S. Radha, V. Poornima, M. Arivanandan, S. Shrestha, T.S. Uma, A facile synthesis of cellulose acetate functionalized zinc oxide nanocomposite for electrochemical sensing of cadmium ions. J. Inorg. Organomet. Polym. Mater. 29, 989–999 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Materials and Thin Film Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Department of PhysicsTBML CollegePorayarIndia
  3. 3.Nano and Computational Materials Laboratory, Department of Industrial ChemistryAlagappa UniversityKaraikudiIndia
  4. 4.Department of Physics (CISL)Annamalai UniversityChidambaramIndia

Personalised recommendations