Applied Physics A

, 125:666 | Cite as

Uniform and electroforming-free resistive memory devices based on solution-processed triple-layered NiO/Al2O3 thin films

  • Xiao Lin Wang
  • Chao Wen
  • Yuan Liu
  • T. P. Chen
  • Hai Yan Zhang
  • Yu ZhaoEmail author
  • Zhen LiuEmail author


In this work, a resistive switching memory device with Ag/(NiO/Al2O3)3/fluorine-doped SnO2 structure was fabricated with solution-based process including spin-coating of triple-layered NiO/Al2O3 films and ink-jet printing of Ag electrodes. Bipolar resistive switching characteristic was observed in such a structure, with the resistance ratio between high and low resistance states over two orders and good cycling stability in voltage sweeping measurements. More importantly, the SET/RESET voltages, which were in the range of 0.8‒2.4 V and − 0.7 to − 2.8 V, respectively, showed significant improvement in voltage distribution (78.4% and 71.2% narrower) as compared to devices solely based on Al2O3 film. It is believed that the narrow distribution of SET and RESET voltages results from the reduced randomness of the formation and rupture of conductive filaments under applied voltages, since NiO and Al2O3 have different dielectric constants and the distribution of electric field in the multilayers can be varied to facilitate the formation and rupture of conductive filaments. Moreover, electroforming process was not required to activate the device based on triple-layered NiO/Al2O3 films. The characterization results especially the narrow SET/RESET voltage distribution and forming-free property make devices based on multilayered NiO/Al2O3 thin films promising for thin film-based nonvolatile memory applications.



This work has been supported by the National Natural Science Foundation of China (NSFC) under project No. 61404031, the Science and Technology Program of Guangdong Province of China under Project No. 2016A050502058, and the Department of Education of Guangdong Province under Project No. 2014KTSCX054.


  1. 1.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    T.C. Chang, K.C. Chang, T.M. Tsai, T.J. Chu, S.M. Sze, Resistance random access memory. Mater. Today 19, 254–264 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron. 125, 25–38 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 063002 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu, T.P. Chen, Z. Liu, Y.F. Yu, Q. Yu, P. Li, S. Fung, Self-learning ability realized with a resistive switching device based on a Ni-rich nickel oxide thin film. Appl. Phys. A 105, 855–860 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Liu, T.P. Chen, Y. Liu, S. Zhang, Magnetron Sputtered Ni-rich Nickel Oxide Nano-Films for resistive switching memory applications. Int. J. Appl. Ceram. Technol. 10, 20–25 (2013)CrossRefGoogle Scholar
  7. 7.
    E.J. Yoo, M. Lyu, J.H. Yun, C.J. Kang, Y.J. Choi, L.Z. Wang, Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3- xClx perovskite for resistive random access memory devices. Adv. Mater. 27, 6170–6175 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Ji, B. Cho, S. Song, T.W. Kim, M. Choe, Y.H. Kahng, T. Lee, stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 22, 3071–3075 (2010)CrossRefGoogle Scholar
  9. 9.
    C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.W. Li, Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Z.H. Chen, Z. Liu, W.K. Ma, Y.K. Shen, H.Y. Zhang, T.P. Chen, International Nanoelectronics Conference 1–2 (2016)Google Scholar
  13. 13.
    P. Zhou, H. Shen, J. Li, L.Y. Chen, C. Gao, Y. Lin, T.A. Tang, Resistance switching study of stoichiometric ZrO2 films for non-volatile memory application. Thin Solid Films 518, 5652–5655 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S.A. Hadi, K.M. Humood, M.A. Jaoude, H. Abunahla, H.F.A. Shehhi, B. Mohammad, Bipolar Cu/HfO2/p2+ Si memristors by sol-gel spin-coating method and their application to environmental sensing. Sci. Rep. 9, 9983 (2019)CrossRefGoogle Scholar
  15. 15.
    D. Conti, M. Laurenti, S. Porro, C. Giovinazzo, S. Bianco, V. Fra, A. Chiolerio, C.F. Pirri, G. Milano, C. Ricciardi, Resistive switching in sub-micrometric ZnO polycrystalline films. Nanotechnology 30, 065707 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    T. You, Y. Shuai, W. Luo, N. Du, D. Burger, I. Skorupa, R. Hubner, S. Henker, C. Mayr, R. Schuffny, T. Mikolajick, O.G. Schmidt, H. Schmidt, Exploiting memristive BiFeO3 bilayer structures for compact sequential logics. Adv. Funct. Mater. 24, 3357–3365 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K.C. Chang, T.C. Chang, T.M. Tsai, R. Zhang, Y.C. Hung, Y.E. Syu, Y.F. Chang, M.C. Chen, T.J. Chu, H.L. Chen, C.H. Pan, C.C. Shih, J.C. Zheng, S.M. Sze, Physical and chemical mechanisms in oxide-based resistance random access memory. Nanoscale Res. Lett. 10, 1–27 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    electrochemical systems at the atomic scale, Valov, Redox-based resistive switching memories (ReRAMs). Chemelectrochem 1, 26–36 (2014)CrossRefGoogle Scholar
  20. 20.
    Z. Liu, T.P. Chen, Y. Liu, M. Yang, J.I. Wong, Z.H. Cen, Static dielectric constant of Al nanocrystal/Al2O3 nanocomposite thin films determined by the capacitance-voltage reconstruction technique. Appl. Phys. Lett. 96, 173110 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    R.L. Nigro, G. Fisichella, S. Battiato, G. Greco, P. Fiorenza, F. Roccaforte, G. Malandrino, An insight into the epitaxial nanostructures of NiO and CeO2 thin film dielectrics for AlGaN/GaN heterostructures. Mater. Chem. Phys. 162, 461–468 (2015)CrossRefGoogle Scholar
  22. 22.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, High-K gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    S.B. Chen, C.H. Lai, A. Chin, J.C. Hsieh, J. Liu, High-density MIM capacitors using Al2O3 and AlTiOx dielectrics. IEEE Electron Device Lett. 23, 185–187 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    R. Ravindran, K. Gangopadhyay, S. Gangopadhyay, N. Mehta, N. Biswas, Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles. Appl. Phys. Lett. 89, 263511 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    K.M. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C.Y. Huang, C.Y. Huang, T.L. Tsai, C.A. Lin, T.Y. Tseng, Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance. Appl. Phys. Lett. 104, 062901 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Q.Q. Sun, J.J. Gu, L. Chen, P. Zhou, P.F. Wang, S.J. Ding, D.W. Zhang, Controllable filament with electric field engineering for resistive switching uniformity. IEEE Electron Device Lett. 32, 1167–1169 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kim, E. Kim, Y. Kim, J.H. Sok, K. Park, Characteristics of resistive switching in ZnO/SiOx multi-layers for transparent nonvolatile memory devices. J. Korean Phys. Soc. 69, 1798–1804 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Fang, H.Y. Yu, X. Li, N. Singh, G.Q. Lo, D.L. Kwong, HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity. IEEE Electron Device Lett. 32, 566–568 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Y.-T. Wu, S. Jou, P.-J. Yang, Resistance switching of thin AlOx and Cu-doped-AlOx films. Thin Solid Films 544, 24–27 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    P.S. Chen, Y.S. Chen, H.Y. Lee, W. Liu, P.Y. Gu, F. Chen, M.J. Tsai, Improved endurance in ultrathin Al2O3 film with a reactive Ti layer based resistive memory. Solid State Electron 77, 41–45 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M.S. Kim, Y.H. Hwang, S. Kim, Z. Guo, D.I. Moon, J.M. Choi, M.L. Seol, S.S. Bae, Y.K. Choi, Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory. Appl. Phys. Lett. 101, 243503 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S. Kim, Y.K. Choi, Resistive switching of aluminum oxide for flexible memory. Appl. Phys. Lett. 92, 223508 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnergyGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of AutomationGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations