Advertisement

Applied Physics A

, 125:649 | Cite as

Effect of Bi2O3 on some optical and gamma-photon-shielding properties of new bismuth borate glasses

  • M. I. SayyedEmail author
  • Y. S. Rammah
  • Farah Laariedh
  • A. S. Abouhaswa
  • T.-B. Badeche
Article
  • 36 Downloads

Abstract

In this study, glasses with composition (75−y)B2O3yBi2O3−12.5Na2O−12.5CaO: y = 0, 5, 10, 15, 20, and 25 mol% were fabricated by conventional method (melt quenching). The amorphous state of the glasses was tested by XRD measurements. Densities and molar volumes of the prepared samples were measured. The optical absorption spectra were registered in UV–Vis range of 190–1100 nm wavelength. The optical energy gaps (\(E_{{{\text{ASF}}}}^{{{\text{Optical}}}}\)) for all samples were evaluated using the absorption spectrum fitting (ASF) method. Indeed, refractive index (n) and optical dielectric constant (εOptical) have been studied. Results reveal that the (\(E_{{{\text{ASF}}}}^{{{\text{Optical}}}}\)) reduces, while (n) and (εOptical) increase with increasing Bi2O3 content. Photon-shielding parameters for the glasses were examined by computing the mass attenuation coefficients (µ/ρ) in the energy range 0.356–2.506 MeV with the help of WinXCOM program. It is found that the suggested glasses are promising materials for photon shielding with enhancement of Bi2O3 concentration.

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at University of Tabuk for funding this work through Research Group no. S-1440-0321.

References

  1. 1.
    E. Şakar, M. Büyükyıldız, B. Alım, B.C. Şakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 159, 64–69 (2019)CrossRefGoogle Scholar
  2. 2.
    S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, Structural, Optical investigation and shielding featuresof tungsten bismuth tellurite based glasses. J. Non-Cryst. Solids 503–504, 158–168 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kaçal, An extensive investigation on gamma ray shielding features of Pd/Ag based alloys. Nucl. Eng. Technol. 51, 853–859 (2019)CrossRefGoogle Scholar
  5. 5.
    S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat. Effects Defects Solids 2018, 1–15 (2018)Google Scholar
  7. 7.
    M.K.A. Roslan, M. Ismail, A.B.H. Kueh, M.R.M. Zin, High-density concrete: exploring ferro boron effects in neutron and gamma radiation shielding. Constr. Build. Mater. 215, 718–725 (2019)CrossRefGoogle Scholar
  8. 8.
    F. Akman, M.R. Kaçal, M.I. Sayyed, H.A. Karatas, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 782, 315–322 (2019)CrossRefGoogle Scholar
  9. 9.
    M.R. Kaçal, F. Akman, M.I. Sayyed, F. Akman, Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl. Nucl. Eng. Technol. 51, 818–824 (2019)CrossRefGoogle Scholar
  10. 10.
    M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017)CrossRefGoogle Scholar
  11. 11.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 161, 55–59 (2019)CrossRefGoogle Scholar
  12. 12.
    E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. 160, 112–123 (2019)CrossRefGoogle Scholar
  13. 13.
    N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    I.I. Kindrat, B.V. Padlyak, A. Drzewiecki, Intrinsic luminescence of un-doped borate glasses. J. Lumin. 187, 546–554 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Un, Investigation of dopant effect on some TL dosimeters containing boron. Radiat. Phys. Chem. 85, 23–35 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    E. Kavaz, H.O. Tekin, O. Agar, E.E. Altunsoy, O. Kilicoglu, M. Kamislioglu, M.M. Abuzaid, M.I. Sayyed, The mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. 45, 15348–15357 (2019)CrossRefGoogle Scholar
  17. 17.
    E. Kavaz, N.Y. Yorgun, Gamma ray buildup factors of lithium borate glasses doped with minerals, gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloys Compd. 752, 61–67 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B 266, 140–146 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 404, 167–173 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kaewjaen, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3–CaO–B2O3–SiO2 glass for diagnosis X-rays shielding material application. Radiat. Phys. Chem. 160, 41–47 (2019)CrossRefGoogle Scholar
  21. 21.
    T. Inoue, T. Honma, V. Dimitrov, T. Komatsu, Approach to thermal properties and electronic polarizability from average single bond strength in ZnO–Bi2O3–B2O3 glasses. J. Solid State Chem. 183, 3078–3085 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    A. Dutta, A. Ghosh, Structural and optical properties of lithium barium bismuthate glasses. J. Non-Cryst. Solids 353, 1333–1336 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    H. Deters, J.F. de Lima, C. Magon, A. de Camargo, H. Eckert, Structural models for yttrium aluminium borate laser glasses: NMR and EPR studies of the system (Y2O3)0.2–(Al2O3)x–(B2O3)0.8−x. Phys. Chem. Chem. Phys. 13, 16071–16083 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Bale, N.S. Rao, S. Rahman, Spectroscopic studies of Bi2O3–Li2O–ZnO–B2O3 glasses. Solid State Sci. 10, 326–331 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    S. Rani, S. Sanghi, A. Agarwal, N. Ahlawat, Influence of Bi2O3 on optical properties and structure of bismuth lithium phosphate glasses. J. Alloys Compd. 477, 504–509 (2009)CrossRefGoogle Scholar
  26. 26.
    L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    J. Tauc, Amorphous and Liquid Semiconductors, 1st edn. (Plenum, London, 1974)CrossRefGoogle Scholar
  29. 29.
    N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  30. 30.
    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40, 14477–14481 (2014)CrossRefGoogle Scholar
  32. 32.
    S.L. Meena, B. Bhatia, Polarizability and optical basicity of Er3+ ions doped zinc lithium bismuth borate glasses. J. Pure Appl. Ind. Phys. 6(10), 175–183 (2016)Google Scholar
  33. 33.
    B. Bhatia, S.L. Meena, V. Parihar, M. Poonia, Optical basicity and polarizability of Nd3+-doped bismuth borate glasses. New J. Glass Ceram. 2015, 44–52 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    E.S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150, 120–124 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    S. Jayakumar, T. Saravanan, J. Philip, Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites. Appl. Nanosci. 7, 919–931 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    A. Kumar, Gamma ray shielding properties of PbO–Li2O–B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. I. Sayyed
    • 1
    Email author
  • Y. S. Rammah
    • 2
  • Farah Laariedh
    • 1
  • A. S. Abouhaswa
    • 2
  • T.-B. Badeche
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceMenoufia UniversityShibin El KomEgypt

Personalised recommendations