Advertisement

Applied Physics A

, 125:673 | Cite as

Synthesis and improvement of photocatalytic performance of ZnMn2O4/ZnMgO composite layered microspheres

  • X. Q. WeiEmail author
  • N. Guo
  • G. X. Wang
  • X. R. Ma
Article
  • 46 Downloads

Abstract

The hierarchical ZnMn2O4 and ZnMn2O4/ZnMgO composite nanospheres have been successfully synthesized by a facile hydrothermal method, respectively. The effect of growth time of ZnMn2O4 on structure and photocatalytic performance has been investigated. The ZnMn2O4 nanospheres fabricated at 24 h show the optimal structure, morphology and photocatalytic performance. ZnMn2O4/ZnMgO composite microsphere with many flaky structures was obtained. The ZnMn2O4/ZnMgO microsphere with an interior hollow regular nanosheets is highly beneficial in improving the photocatalytic performance. The photocatalytic performance of ZnMn2O4/ZnMgO composite structure is improved obviously than that of pure ZnMn2O4. The mechanism of the increasing photocatalytic performance for ZnMn2O4/ZnMgO compound structure is discussed. These results indicate the hierarchical ZnMn2O4/ZnMgO composite nanospheres promising applications as high-performance photocatalytic materials.

Notes

Acknowledgements

The authors are grateful for the financial support by the National Natural Science Foundation of China (Grant no. 11304120), the Shandong Provincial Natural Science Foundation (ZR2013AM008, ZR2009FZ006, ZR2010EL017).

References

  1. 1.
    J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167 (2013)CrossRefGoogle Scholar
  2. 2.
    J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651 (2008)CrossRefGoogle Scholar
  3. 3.
    J.P. Chen, C.M. Sorensen, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B. 54, 9288 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    D.W. Ding, M. Long, W.M. Cai, Y.H. Wu, D.Y. Wu, C. Chen, In-situ synthesis of photocatalytic CuAl2O4–Cu hybrid nanorod arrays. Chem. Commun. 24, 3588 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Sahoo, Y. Sharma, Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material. Mater. Chem. Phys. 721, 149–150 (2015)Google Scholar
  6. 6.
    M. Mehta, A.P. Singh, S. Kumar, S. Krishnamurthy, B. Wickman, S. Basu, Synthesis of MoS2–TiO2 nanocomposite for enhanced photocatalytic and photoelectrochemical performance under visible light irradiation. Vacuum 155, 675–681 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    C.S. Chen, S.Y. Cao, W.W. Yu, X.D. Xie, Q.C. Liu, Y.H. Tsang, Y. Xiao, Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes. Vacuum 116, 48–53 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    J.T. Tang, J.Y. Li, Y. Cheng, P. Huang, Q. Deng, Facile hydrothermal-carbonization preparation of carbon-modified Sb2S3 composites for photocatalytic degradation of methyl orange dyes. Vacuum 120, 96–100 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Disseler, Y. Chen, S. Yeo, G. Gasparovic, P.M.B. Piccoli, A.J. Schultz, Y. Qiu, Q. Huang, S.-W. Cheong, W. Ratcliff, One dimensional (1D)-to-2D crossover of spin correlations in the 3D magnet ZnMn2O4. Nat. Sci. Rep. 5, 17771 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    G.Q. Zhang, L. Yu, H.B. Wu, H.E. Hoster, X.W. Lou, Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 24, 4609 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Zhou, H.B. Wu, T. Zhu, X.W. Lou, Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J. Mater. Chem. 22, 827 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.J. Kang, D.S. Kim, S.H. Lee, J.H. Park, Ferromagnetic Zn1−xMnxO (x = 0.05, 0.1, and 0.2) nanowires. J. Phys. Chem. C 111, 14956 (2007)CrossRefGoogle Scholar
  13. 13.
    L.F. Xiao, Y.Y. Yang, J. Yin, Q. Li, L.Z. Zhang, Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J. Power Sources 194, 1089 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    L.H. Zhang, S.Q. Zhu, H. Cao, L.R. Hou, C.Z. Yuan, Hierarchical porous ZnMn2O4 hollow nanotubes with enhanced lithium storage toward lithium-ion batteries. Chem. Eur. J. 21, 10771 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Zhao, X.Y. Li, J. Zhao, Fabrication, characterization and photocatalytic activity of cubic-like ZnMn2O4. Appl. Surf. Sci. 268, 274 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    L.W. Yin, Z.W. Zhang, Z.Q. Li, F.B. Hao, Q. Li, C.X. Wang, R.H. Fan, Y.X. Qi, Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv. Funct. Mater. 24, 4176 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Li, J. Liu, Y. Liu, Y. Wang, Z. Li, W. Wu, Y. Wang, L. Yin, H. Xie, M. Wu, X. He, J. Qiu, Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery. Electrochim. Acta 180, 164 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Zhang, H.J. Yue, H.L. Qiu, K. Zhu, L.J. Zhang, Y.J. Wei, F. Du, G. Chen, D. Zhang, Synthesis of graphene-wrapped ZnMn2O4 hollow microspheres as high performance anode materials for lithium ion batteries. RSC Adv. 5, 99107 (2015)CrossRefGoogle Scholar
  19. 19.
    X.F. Li, Y.L. Xu, Enhanced cycling performance of spinel LiMn2O4 coated with ZnMn2O4 shell. Solid State Electrochem. 12, 851 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 101, 315 (2005)CrossRefGoogle Scholar
  21. 21.
    B.S. Kwak, K.M. Kim, S.-M. Park, M. Kang, Synthesis of basalt fiber@Zn1−xMgxO core/shell nanostructures for selective photoreduction of CO2 to CO. Appl. Surf. Sci. 407, 109–116 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A. Kharatzadeh, F.J. Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Nouri, A. Habibi-Yangjeh, M. Azadi, Preparation of Ag/ZnMgO nanocomposites as novel highly efficient photocatalysts by one-pot method under microwave irradiation. J. Photochem. Photobiol. A 281, 59–67 (2014)CrossRefGoogle Scholar
  24. 24.
    R.R. Zhao, X.Q. Wei, M. Ding, X.J. Xu, Fabrication and optical properties of Mg-doped ZnO nanorods by chemical vapor deposition. Sci. Adv. Mater. 6, 1–5 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    N. Guo, X.Q. Wei, X.L. Deng, X.J. Xu, Synthesis and property of spinel porous ZnMn2O4 microspheres. Appl. Surf. Sci. 356, 1127 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Nogues, P. Poix, Effet Jahn–Teller coopératif dans le système ZnMn2O4–Zn2SnO4. Ann. Chim. Paris 1972, 301–314 (1972)Google Scholar
  27. 27.
    M. Tortosa, F.J. Manjon, M. Mollar, B. Mari, ZnO-based spinels grown by electrodeposition. J. Phys. Chem. Solids 73, 1111–1115 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Z.W. Wang, P. Lazor, S.K. Saxenan, H.S.C.O. Neill, High pressure Raman spectroscopy of ferrite MgFe2O4. Mater. Res. Bull. 37, 1589 (2002)CrossRefGoogle Scholar
  29. 29.
    X.Q. Chen, Y.M. Zhang, H.B. Lin, P. Xia, X. Cai, X.G. Li, X.P. Li, W.S. Li, Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J. Power Sources 312, 137 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    L.V. Bora, R.K. Mewada, Visible solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew. Sustain. Energy Rev. 76, 1393–1421 (2017)CrossRefGoogle Scholar
  31. 31.
    P. Zhang, X.Y. Li, Q.D. Zhao, S.M. Liu, Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res. Lett. 6, 323 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and TechnologyUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations