Advertisement

Applied Physics A

, 125:661 | Cite as

Investigation of the lattice defects density and optical characteristics for the anatase phase of titanium dioxide nanocrystalline films

  • Saba Khalili
  • Vishtasb SoleimanianEmail author
  • Ali Mokhtari
  • Mohsen Ghasemi
Article
  • 26 Downloads

Abstract

The spin-coating sol-gel method was used and the nanocrystallines of titanium dioxide were deposited on the ordinary glass slide substrates. The films were annealed in air at temperature range between 350 and \(550\,\,^{\circ }\hbox {C}\) and the scanning electron microscopy images of them were analyzed to study the morphology as well as the thickness of films in terms of shape and size distribution behavior of embedded nanoparticles. The behavior of distribution functions was applied; the X-ray diffraction patterns were simulated and compared to the measured \(\hbox {TiO}_2\) peak profiles, using the advanced X-ray diffraction analysis. The volume weighted average crystallite size and the density of linear lattice defects were investigated as a function of annealing temperature. The transmittance spectra of our \(\hbox {TiO}_2\) films were taken by spectrophotometer and the film thicknesses as well as the optical energy gap were calculated. It is found that the film thickness of our samples is in the range of 343–397 nm which is in agreement with the SEM-cross section results. It is also seen that with the elevation of annealing temperature, the energy gap of films decreases. Finally, the correlation between the optical band gap and microstructure parameters (i.e., crystallite size, dislocation density as well as the strain along the z direction) and optical characteristics was studied.

Notes

Acknowledgements

The authors are very grateful to Prof. M. Leoni for providing us with the PM2K software and their permission to use it.

Supplementary material

339_2019_2955_MOESM1_ESM.rar (3 kb)
Supplementary material 1 (rar 3 KB)

References

  1. 1.
    M. Horn, C.F. Schwerdtfeger, E.P. Meagher, Refinement of the structure of anatase at several temperatures. Zeitsch. Kristallogr. Crystallogr. Mater. 136, 273–281 (1972)ADSGoogle Scholar
  2. 2.
    T.M. Sabine, C.J. Howard, Determination of the oxygen x parameter in Rutile by neutron powder methods. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38, 701–702 (1982)CrossRefGoogle Scholar
  3. 3.
    E.P. Meagher, G.A. Lager, Polyhedral thermal expansion in the \(\text{ TiO }_2\) polymorphs; refinement of the crystal structures of rutile and brookite at high temperature. Can. Mineral. 17, 77–85 (1979)Google Scholar
  4. 4.
    T. Fotiou, T.M. Triantis, T. Kaloudis, A. Hiskia, Evaluation of the photocatalytic activity of \(\text{ TiO }_2\) based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chem. Eng. J. 261, 17–26 (2015)CrossRefGoogle Scholar
  5. 5.
    V. Scuderi, G. Impellizzeri, L. Romano, M. Scuderi, G. Nicotra, K. Bergum, A. Irrera, B.G. Svensson, V. Privitera, \(\text{ TiO }_2\)-coated nanostructures for dye photo-degradation in water. Nanoscale Res. Lett. 9, 458–464 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    K. Frohlich, B. Hudec, M. Tapajna, K. Husekova, A. Rosova, P. Elias, J. Aarik, R. Rammula, A. Kasikov, T. Arroval, L. Aarikb, K. Murakamic, M. Rommeld, A.J. Bauer, \(\text{ TiO }_2\)-Based metal-insulator-metal structures for future DRAM storage capacitors. ECS Trans. 50, 79–87 (2013)CrossRefGoogle Scholar
  7. 7.
    M.T. McDowell, M.F. Lichterman, A.I. Carim, R. Liu, S. Hu, B.S. Brunschwig, N.S. Lewis, The influence of structure and processing on the behavior of \(\text{ TiO }_2\) protective layers for stabilization of n-\(\text{ Si }/\text{ TiO }_2/\text{ Ni }\) Photoanodes for Water Oxidation. ACS Appl. Mater. Interfaces 7, 15189–15199 (2015)CrossRefGoogle Scholar
  8. 8.
    J.K. Tsai, W.D. Hsu, T.C. Wu, T.H. Meen, W.J. Chong, Effect of compressed \(\text{ TiO }_2\) nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 459–464 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A. Kusior, A. Wnuk, A. Trenczek-Zajac, K. Zakrzewska, M. Radecka, \(\text{ TiO }_2\) nanostructures for photoelectrochemical cells (PECs). Int. J. Hydrogen Energy 40, 4936–4944 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Ungar, J. Gubicza, Nanocrystalline materials studied by powder diffraction line profile analysis. Zeitsch. Kristallogr. Cryst. Mater. 222, 114–128 (2007)ADSGoogle Scholar
  11. 11.
    V. Soleimanian, M. Saeedi, A. Mokhtari, The influence of heat treatment on the crystallite size, dislocation density, stacking faults probability and optical band gap of nanostructured cadmium sulfide films. Mater. Sci. Semicond. Process. 30, 118–127 (2015)CrossRefGoogle Scholar
  12. 12.
    V. Soleimanian, M. Fallah, S. Aghdaee, Correlation between the microstructure and gas sensing characteristics of nanocrystalline ZnO thin films. J. Mater. Sci. Mater. Electron. 27, 1946–1954 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Yang, R. Yang, J. Zhang, Z. Yang, S.F. Liu, C. Li, High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8, 3208–3214 (2015)CrossRefGoogle Scholar
  14. 14.
    W.S. Shih, S.J. Young, L.W. Ji, W. Water, H.W. Shiu, TiO2-based thin film transistors with amorphous and anatase channel layer. J. Electrochem. Soc. 158, H609–H611 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Martinez-Garcia, M. Leoni, P. Scardi, A general approach for determining the diffraction contrast factor of straight-line dislocations. Acta Crystallogr. Sect. A Found. Crystallogr. 65, 109–119 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Leoni, J. Martinez-Garcia, P. Scardi, Dislocation effects in powder diffraction. J. Appl. Crystallogr. 40, 719–724 (2007)CrossRefGoogle Scholar
  17. 17.
    C.Y. Wu, Y.L. Lee, Y.S. Lo, C.J. Lin, C.H. Wu, Thickness-dependent photocatalytic performance of nanocrystalline \(\text{ TiO }_2\) thin films prepared by sol-gel spin coating. Appl. Surf. Sci. 280, 737–744 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.S. Ogorevc, E.T. Pirc, L. Matoh, P. Bukovec, Antibacterial and photodegradative properties of metal doped \(\text{ TiO }_2\) thin films under visible light. Acta Chim. Slov. 59, 264–272 (2012)Google Scholar
  19. 19.
    C.C. Chang, C.K. Lin, C.C. Chan, C.S. Hsu, C.Y. Chen, Photocatalytic properties of nanocrystalline \(\text{ TiO }_2\) thin film with Ag additions. Thin Solid Films 494, 274–278 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Mittemeijer, P. Scardi, Diffraction Analysis of the Microstructure of Materials (Springer Science & Business Media, Berlin, 2013)Google Scholar
  21. 21.
    P. Scardi, M. Leoni, Whole powder pattern modelling. Acta Crystallogr. Sect. A Found. Crystallogr. 58, 190–200 (2002)CrossRefGoogle Scholar
  22. 22.
    P. Scardi, M. Leoni, Diffraction line profiles from polydisperse crystalline systems. Acta Crystallogr. Sect. A Found. Crystallogr. 57, 604–613 (2001)CrossRefGoogle Scholar
  23. 23.
    P. Scardi, M. Leoni, Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects. J. Appl. Crystallogr. 32, 671–682 (1999)CrossRefGoogle Scholar
  24. 24.
    M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solid. (a) 2, 359–370 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    N. Popa, The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J. Appl. Crystallogr. 31, 176–180 (1998)CrossRefGoogle Scholar
  26. 26.
    T. Ungar, I. Dragomir, A. Revesz, A. Borbely, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992–1002 (1999)CrossRefGoogle Scholar
  27. 27.
    I. Dragomir, T. Ungar, Contrast factors of dislocations in the hexagonal crystal system. J. Appl. Crystallogr. 35, 556–564 (2002)CrossRefGoogle Scholar
  28. 28.
    T. Ungar, H. Mughrabi, D. Ronnpagel, M. Wilkens, X-ray line-broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals. Acta Metall. 32, 333–342 (1984)CrossRefGoogle Scholar
  29. 29.
    J. Tauc, Optical Properties of Amorphous Semiconductors. Amorphous and Liquid Semiconductors (Springer, Berlin, 1974), pp. 159–220CrossRefGoogle Scholar
  30. 30.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214–1222 (1983)ADSCrossRefGoogle Scholar
  31. 31.
    M. Gholami, M. Bahar, M.E. Azim-Araghi, The preparation of \({\rm TiO}_2\) nanoparticles and investigation of its electrical properties as \({\rm CO}_2\) gas sensor at room temperature. Chem. Phys. Lett. 48, 926–9628 (2012)Google Scholar
  32. 32.
    V. Soleimanian, M. Ghasemi, Influence of oxygen partial pressure on opto-electrical properties, crystallite size and dislocation density of Sn doped \(\text{ In }_2\text{ O }_3\) Nanostructures. J. Electron. Mater. 45, 5395–5403 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38, 9797–9805 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    L. Peng, L. Fang, X. Yang, Y. Li, Q. Huang, F. Wu, C. Kong, Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films. J. Alloys Compd. 484, 575–579 (2009)CrossRefGoogle Scholar
  35. 35.
    B.D. Cullity, Elements of X-ray Diffraction (Prentice Hall, Upper Saddle River, 2001), pp. 346–349Google Scholar
  36. 36.
    T. Ungar, Dislocation model of strain anisotropy. Powder Diffr. 23, 125–132 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    W.F. Zhang, M.S. Zhang, Z. Yin, Microstrucyures and visible photoluminescence of \({\rm TiO}_2\) nanocrystals. Phys. Status Solid. (A) Appl. Mater. 179, 319–327 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    S. Kumar, A.K. Ojha, Oxygen vacancy induced photoluminescence properties and enhanced photocatalytic activity of ferromagnetic \({{\rm ZrO}_2}\) nanostructures on methylene blue dye under ultra-violet radiation. J. Alloys Compd. 644, 654–662 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Saba Khalili
    • 1
    • 2
  • Vishtasb Soleimanian
    • 1
    • 2
    Email author
  • Ali Mokhtari
    • 1
    • 2
  • Mohsen Ghasemi
    • 1
    • 2
  1. 1.Department of Physics, Faculty of SciencesShahrekord UniversityShahrekordIran
  2. 2.Nanotechnology Research CenterShahrekord UniversityShahrekordIran

Personalised recommendations